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Abstract: Determining human intention is a challenging task. Many existing techniques
seek to address it by combining many forms of data, such as images, point clouds, poses,
and others, creating multi-modal models. However, these techniques still often require
significant foreknowledge in the form of known potential activities and objects in the
environment, as well as specific types of data to collect. To address these limitations, we
propose Intent-BERT and Universal Context Encoders, which combine to form workload-
agnostic framework that can be used to predict the next activity that a human performs as
an Open Vocabulary Problem and the time until that switch, along with the time the current
activity ends. Universal Context Encoders utilize the distances between the embeddings of
words to extract relationships between Human-Readable English descriptions of both the
current task and the origin of various multi-modal inputs to determine how to weigh the
values themselves. We examine the effectiveness of this approach by creating a multi-modal
model using it and training it on the InHARD dataset. It is able to return a completely
accurate description of the next Action performed by a human working alongside a robot in
a manufacturing task in ∼42% of test cases and has a 95% Top-3 accuracy, all from a single
time point, outperforming multi-modal gpt4o by about 50% on a token by token basis.

Keywords: HRC; HRI; multi-modal human prediction; open vocabulary; cross-attention

1. Introduction
As industry, manufacturing, and assisted living increasingly rely on tighter integration

of automation, the safety and flexibility of Human-Robot Collaboration (HRC) is increas-
ingly important. This has led to larger demand for mutual cognition in HRC, or proactive
robotics as described by Li et al. [1], where robots and humans determine and perform
their tasks independently but with foreknowledge of the other’s actions. However, robots
and humans cannot natively communicate with one another. To address this issue, there
have been many proposed solutions to allow humans and robots to better understand the
other’s current goals and future behaviors, or intentions. This communication must happen
through the various sensing ’channels’ available to humans and robots, as identified by
Bonarini, including sight, sound, and touch [2]. Interpreting these signals is still an open
task without a universal solution, due to the many diverse tasks and channels that exist

Many of the suggested methods utilize augmented or virtual reality [3,4] to keep
the human informed of the robot’s planned moments so that humans can ‘plan around’
the actions of the robot. While such methods do take full advantage of the strengths
associated with human workers (their flexibility), as the system does not proactively acquire
and respond to the human’s intentions, but rather only make the robot’s available to the

Technologies 2025, 13, 61 https://doi.org/10.3390/technologies13020061

https://doi.org/10.3390/technologies13020061
https://doi.org/10.3390/technologies13020061
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0003-2849-7197
https://orcid.org/0000-0002-1827-4355
https://orcid.org/0000-0002-9042-9470
https://doi.org/10.3390/technologies13020061
https://www.mdpi.com/article/10.3390/technologies13020061?type=check_update&version=3


Technologies 2025, 13, 61 2 of 15

humans, forces the humans to ‘work around’ the robots rather than truly collaborating.
Alternatively, there are solutions that enable robots to acquire human intentions, but they
often require some form of active input from the human. This can range from gesture
control, including simple nods and head movements [5], to complex motions [6], to verbal
commands that are parsed and converted to movement constraints [7].

However, these approaches face large hurdles themselves, from requiring computa-
tionally expensive digital twins [8], to reliance upon complex sensors such as lidars or depth
cameras or even brain-human interfaces [9], which limit their transferablity. Additionally,
they typically require active human inputs rather than passive contactless sensing. In
particular, these active inputs limit the practicality and flexibility of the proposed systems,
as human workers would have to alter their workflow to instruct the robot. However,
passive acquisition of human intention is a challenging task, with prior methods like
Markov chains [10] and LSTM-based models [11] only able to function with complete, a
priori knowledge of the types of tasks to be completed and adequate training data.

Moreover, as these solutions are workload-specific, they cannot be easily transferred be-
tween even highly similar scenarios, such as two manufacturing methods, let alone between
completely different ones, such as manufacturing and assisted living. Zheng et al. [12] have
attempted to address this by creating a system to encode contextual data to determine the
similarity between the current state and nodes in a domain-specific knowledge graph to
determine current human actions and identify potential next ones. However, this model
still requires premade hand-crafted knowledge graphs and can only be transferred between
similar workloads.

We instead propose a framework to recover human intention without the limitations
of being tied to specific activity classes, data modality and formats, or a priori knowledge
graphs by formulating this challenge as an Open Vocabulary problem [13]. This method
works through ontology or the relationships between the concept of items or objects. Specif-
ically, by embedding objects and poses in a shared latent space originating from a Natural
Language Processing (NLP) model, our proposed Universal Context Encoders can better
extract the relationships between various observesed system attributes and components
such as objects, joints, and activities with related or similar names in Human Readable
English (HRE). This additional contextual information provides meaningful insight into the
next activities humans will take while not being limited to small, hand-crafted workloads.
Instead, The proposed Intent-BERT framework extracts important contextual information
and uses it to predict the next action to be performed by a human as shown in Figure 1.
Specifically, Figure 1 demonstrates how data from multiple modalities and sources are
embedded into a single shared latent space through a Universal Context Encoder (UCE),
which uses cross attention between the HRE description of the data source (e.g., “hammer”)
and the HRE description of the current Task/Action (e.g., “Picking Left”) to embed the raw
data (e.g., 2D pose/object detection bounding boxes).

Our contributions can be summarized as:

1. A framework, Intent-BERT, using Universal Context Encoders that supports encoding
a diverse range of data modalities and formats into a single latent space through word
embedding similarity

2. The use of Intent-BERT to passively recover a description of the next activity a human
performs in English from a single time point in a scene

3. Additionally, using Intent-BERT to predict the time until the current activity a human
is performing will end and the time until the next activity begins

4. A demonstration and evaluation of this approach on the InHARD Dataset [14].
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Figure 1. A high level overview of Intent-BERT demonstrating how textual descriptions of data and
their sources are used to weight the data through Universal Context Encoders.

The rest of this paper is laid out as follows: In Section 2, we discuss a few related
works. Next, in Section 3, we introduce our methodology before presenting our results in
Section 4. Finally, we conclude our paper in Section 5.

2. Background
The proposed technique builds upon several techniques that combine multiple types

of data to better understand the current scenario and, thus, the context of the system. Once
the context is recovered, it should provide better insights into the intentions of any human
operators. By understanding human intentions, the system can support future human
actions without the humans directly communicating with the system, which meets the
definition of proactive robotics [1].

Additionally, it is important to our discussion to introduce our terminology of Actions,
Tasks, and Workloads, which may vary slightly from prior literature, including the InHARD
dataset [14]. An Action is a particular movement or set of movements that exist independent
of a particular object, i.e., pick up, set down. A Task pairs an Action with an object, i.e.,
pick up the cup. A Workload is a set of tasks to be completed, i.e., the steps to follow to
create a cake. Therefore, an ‘action’ in InHARD is a Task in this paper, while a ‘meta-action’
is an Action. Several related and highly similar terms are also used throughout this work,
including Human-Robot Collaboration, Human-Robot Interaction, and Human-Robot
Collaboration, all of which are defined in Table 1.

Table 1. A brief comparison between the areas relevant to this work. * The main focus of this work.

Area Description

Human-Robot Collaboration
Humans and Robots working jointly (but potentially
spatially or temporally separated) towards the same
goals [1]

Human Robot Interaction Humans and Robots directly interacting to exchange
information or complete a task

Human-Robot Communication Humans and Robots exchanging information

Human Intention Prediction * Predicting the next long term action to be done by a
human.
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2.1. Human Robot Collaboration

As mentioned in Li et al. [1], the ability of humans and robots to work together is
essential to further progress in automation, as well as existing methods. This includes
traditional areas of automation such as assembly and heavy industry, but also rehabilitative
care [15], and many other areas besides. However, humans and robots are able to collaborate
to a limited degree without any communication, with existing assembly line work being
the chief example of such. However, this lack of communication leads to potential safety
issues and efficiency losses due to poor or unstable controllers [15].

2.2. Human-Robot Communication

There are a multitude of proposed methodologies that allow humans and robots to
communicate without contact, which meet the criteria of symbiotic robotics from Li et al. [1].
The medium of communication can take many forms in these approaches, but most current
approaches focus on contactless readings, which do not require humans to touch any
sensors. Vision techniques in this space have been highly successful [16], especially when
expanded to include, gaze [5], gesture [6,17], and pose detection [11]. We outline a few
recent examples and their intuitive reasoning below. An early example of this is given by
Heinzmann et al. [5], where intersections between a human’s eye line and objects on a table
are detected. The human then can provide specific commands by moving their head in
different ways, such as nodding or shaking their head. Gesture Control is another common
approach explored by Strazdas et al. [6]. In particular, they propose a method that allows
humans to ‘mime’ the action they wish the robot to perform to intuitively communicate
their intentions [6].

2.3. Multi-Modal Techniques in Robotics

Many of these human-robot communication forms combine the results of individual
communication methods into ‘multi-modal’ techniques. Wang et al. provides a fairly com-
plete example of this, which combines gesture, haptics, voice, and brainwave processing [9],
where many techniques focus only on two or three methods [18–20]. The individual results
of the communication and perceptual methods are combined following statistical, rules-
based, or deep learning fusion techniques, resulting in a more complete estimation of the
context within a scene.

Multi-modal techniques are also common for tasks outside HRC, both within the
robotic domain [21] and in terms of general computer vision [22]. These multi-modal
techniques can distill to obtain the relevant information or ’knowledge’ contained in each
input type and convert them into a shared domain. This is often done to process commands
given through language using Natural Language Processing (NLP) to create outputs in
other domains, such as vision. Latte [7] demonstrates how verbally expressed human
intentions can be translated into robot velocities.

2.4. Human Intention Prediction

Many works prior to the recent focus on context-awareness focused on predicting
human motion from past behavior. This took many forms, including Kalman filters [23] or
other pure spatio-temporal analysis [24]. Alternatively, Ragaglia et al. predict all spaces
humans may physically be able to occupy within a certain time range under some velocity
and limb orientation constraints [25]. However, these have the obvious weakness that in
many Workloads, future Tasks may involve different parts and tools than prior ones, which
limits the adaptability of these techniques.

Thus, many solutions begin attempting to understanding human intentions to predict
motion. To solve this, Liu et al. use hidden Markov chains to predict future contexts from
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previous and current ones for particular manufacturing Workloads [10]. This approach
relies upon probabilities of the last few actions to predict future ones, which works well
for repetitive or highly deterministic tasks but less well for complex graph-like Workloads.
To address this, Zhang et al. proposed a method to encode context vectors into a latent
space and match a vector describing the current context against a pre-made domain-specific
graph [26]. This allows for greater flexibility than hidden Markov chains, including support
for transferring solutions across similar but different Workloads. Li et al. similarly create a
method that constructs a graph representing spatial relationships within a scene [27].

3. Methodology
One of the main shortcomings of current Human-Intention predictions is their reliance

upon hand-crafted rules, specific data types, or Workload-specific graphs. To address this,
we propose a method that formulates the prediction of the next action to be performed as an
Open Vocabulary problem [13] which can be seen in Figure 2. Specifically, by labeling the
sources, modalities, and channels [2] of all observed system attributes in Human Readable
English (HRE), Natural Language Processing (NLP) can be used to weight and merge all
such data into a single latent space describing the context of the system, with the weights
determined by cross attention between the data source or modality to the work being done.
This latent space is then mined to predict future contexts, without any domain-specific
foreknowledge, increasing its transferability.

Figure 2. A complete overview of the proposed architecture. The Image and Joint Encoders are
introduced in Section 3.2, while ‘Encoders’ are transformer encoders from [28]. B is batch size, L is
sequence length, and ED is Embed dimension.

3.1. Intuitive Rationale

Multi-modal techniques have strongly benefited from including transformers and
attention, which more easily allows diverse data types to be embedded into a shared latent
space. We use BERT [29] from Keras NLP [30] to tokenize and embed Human-Readable
English (HRE) Action and Task descriptions along with HRE joint and object (i.e., source
or origin) names detected within the scene at any given time. These are used as Queries
and Keys for a cross-attention network, where the Values can be any arbitrary data source.
Figure 3 provides an example of 2D joint positions being embedded through a Universal
Context Encoder (UCE). The UCE uses cross attention between the current Task or Action
and the HRE description of the data to weight the relevancy and importance of the data
when embedding. As a result a UCE is capable of embedding data from a diverse range
of modalities into a single shared latent space by exploiting the relationships between
descriptions of each data source and the current task.
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Figure 3. The Proposed Universal Context Encoder. It uses similarity in token embeddings to extract
relationships between source values and the current task.

This is due to the meaning of words captured by the NLP embedding (done by BERT
in our case), placing more similar words and phrases more closely to each other in the
embedded space than unrelated words. This proximity in the embedded space allows the
UCE to exploit the relationships between these HRE descriptions to weight the importance
of the Values (i.e., raw data) to each dimension in the latent space without placing any
requirements on the types, origins, or formats of that incoming raw data. In short, this
enables a UCE to flexibly weigh the importance of collected data through its relationship
to the current task. e.g., ‘LeftHand’ is more correlated to ‘Pick up Left’ than ‘RightLeg’ is,
and if ’RightHand’ has higher velocity during this time, that its more likely that the next
Action is ’Put Down Right’. This also works for bounding boxes or segmentation results as
opposed to velocity measurements, where the HRE class name of the object is provided as
the key or any other types of data that have HRE descriptions.

3.2. Proposed Framework

To accomplish this, we propose a framework that natively supports multi-modal
analysis, combining inputs from various contextual sources. As shown in Figure 2 for
the InHARD dataset, we prepare an example architecture using this framework. Firstly,
the textual inputs (i.e., the HRE Actions/Meta-Actions and Tasks from Intent-BERT) are
tokenized and embedded by BERT. The Task and Action tokens directly go through two
layers of self attention. They are also passed to the model’s UCE as Queries (e.g., “Picking
Left”, “Consult Sheets”), while the various modalities of other data such as 3D poses have
any HRE descriptions (e.g., “Right Elbow”, “Left Hip”) extracted and used as Keys for their
corresponding data, as shown in Figure 4. This allows the network to learn relationships
between the origin of each data point and the Task and Action being performed. The
Values passed to the Encoders are the data values themselves and are thus modified by the
relationships extracted between the datum’s origin and the current Task/Action. This same
process is repeated for 2D poses, with the pose values and HRE descriptions extracted
from the recorded video using Yolo v8 [31] before being passed into the same UCE instance
as the 3D data as shown in Figure 5 Finally, the outputs from the UCEs are summed and
normalized to create a single latent space capturing the entirety of the scene.

However, Universal Context Encoders only support human-describable content. Ex-
tracted image features, which do not have HRE data, are handled as follows: a 1 × 1
convolutional layer is used to represent the same depth as the BERT embedding. Positional
Embedding, similar to that used in Visual Transformers [32] is then used to encode em-
bedded features with additional spatial meaning (to help identify the location of tools and
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equipment). This is then squeezed into three dimensions, preserving the batch size and
embedding depth before being passed to an Encoder as both the Value and Key. Addition-
ally, the HRE embeddings of the 2D Joints are concatenated with the joint data itself before
going through a fully connected layer to return to the original embedding depth. This is
done to add spatial information to the Keys to better support the meaning of joints located
at different places in the image.

Figure 4. Structure of the proposed Universal Context Encoder being used to encode 3D joint data.
Note that the Query (Task/Action) and Key (Tokenized Joint Name) vectors share the same last
dimension as they were both created by BERT, and cross attention between the two is used to weigh
the raw 3D position and velocities.

Figure 5. Structure of the proposed Universal Context Encoder being used to encode 2D joint data.
Note that 2D pose information is extracted via a separate network, with the HRE joint names tokenzied
into the space used by BERT. These are then used as Keys to the raw 2D data of each joint’s pose (which
in turn act as Values). Cross attention occurs between the Keys and the Action/Task description.

This combined latent space is then decoded by two Transformer Decoders in the
style of Vaswani et al. [28], one to recover the next Task and one to recover the next
Action. These Decoders are completely self-attended, using the combined space for both
the encoder and decoder sequences. Moreover, the raw embedded spaces are also returned
to calculate losses using the Embed Loss as described in Section 3.3 and Equation (3).
Finally, the combined latent space is flattened and passed through a fully connected layer
with ReLU activation to predict the time until the current activity stops. The result of this is
concatenated with the flattened space and passed through a second Fully Connected layer,
also with ReLU activation, to predict the time until the next activity starts.
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3.3. Losses

To assist our model in recovering the Action and Task descriptions, the model outputs
both the recovered HRE descriptions, as well as the raw embeddings. The raw embeddings
are used to provide additional feedback to the model to better place predictions in the latent
space, in addition to more standard objective functions. In this section, we will introduce
all the losses used for each output and the rationale behind the selection of each.

ClippedPredictor = clip(ŷ, Predmin, Predmax) (1)

We begin with the Action/Task outputs. The HRE Token outputs are trained using
Categorical Cross-Entropy [33], jointly optimized along with our novel Embed Loss from
Equation (3) calculated from the raw embedded output. Embed Loss seeks to align the
output embeddings directly with embeddings of the target HRE strings as processed by
BERT to maintain the coherency of the embedded process. Embed Loss merges our novel
LatentGapLoss (LGL, Equation (2)), a metric based on Mean Average Percentage Error
(MAPE) [34], with standard Cosine Similarity [35]. For these, y denotes ground truth values
and ŷ denotes predictions, and |x| is the absolute value of x. predmin and Predmax are
user-defined limits for the clipping operation.

LGL(y, ŷ) =
|y − ŷ|(|ytrue|+ |ClippedPredictor + 2ϵ)

|y| ∗ |ClippedPredictor|+ ϵ
(2)

MAPE is known to have several limitations as an objective metric, but unlike
logarithmic-based losses, it supports negative values smaller than −1, which often oc-
cur in embeddings. MAPE is used over Mean Square Error (MSE) [36] as the values of
each axis in the embedded space are not normalized, which means that a small error on
one axis can carry far more impact than a larger error along another. Thus we optimize for
the relative position along each axis with MAPE, rather than the absolute position with
MSE. LGL differs from standard MAPE by including a denominator factor based on ŷ, the
predictions, to penalize all predictions smaller than a user-defined ϵ, to mitigate the ‘all
0’ predictions that can occur with MAPE. This prediction factor is clipped (Equation (1))
to prevent rewarding meaningless large predictions. Cosine Similarity is added into the
Embed Loss function to optimize for the absolute distances away from the origin of the
latent space [37], to better align the absolute positioning of embedded predictions. This
Cosine Similarity (CS) is multiplied by −1 to convert it to be a loss (smaller score better),
then summed with a 1 to ensure the output is in the range of [0, 2] rather than [−1, 1].
Thus between LGL and CS, both the relative and absolute positions of the predictions in
the embedded space are optimized.

EmbedLoss(y, ŷ) = LGL(y, ŷ)× [(−CS(y, ŷ) + 1) + 1] (3)

Comparatively, the error for the time outputs are comparatively simple. Mean Square
Logarithmic Error is used, as the time values predicted cannot be under 0 and the relative
accuracy is more important than the absolute. In other words, we want to ensure smaller
error as the true time to finish the current task or start the next approaches and accept
larger errors as the true times are more distant.

4. Results
We validate our approach by training the proposed architecture on the InHARD

dataset [14]. It is important to note that our intention with this case study is to demonstrate
how Universal Context Encoders can be used to combine various multi-modal data in an
intuitive, easily transferable fashion, rather than evaluate the specific Universal Context
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Encoders and data modalities used. InHARD includes multiple cameras placed around a
workstation while human workers collaborate with a robotic arm to complete assembly
tasks. Each human is wearing 3D location sensors across their body, which recover the
position and orientation of their joints. The current Action (‘meta-action’ in the dataset) and
Task (‘action’) of the worker at each time point are recorded. InHARD includes 14 Actions
(e.g., ‘Take component’, ‘Picking left’) and 75 Tasks (e.g., ‘Place LARD on Profile P360-1’,
‘Put down Cover CAPO’).

4.1. Experimental Setup

All training was completed on a computer with 32 GB of DDR4 RAM, an 11700k CPU
at 3.60 GHz, and an Nvidia 2080 Ti, running Tensorflow 2.13 and Pytorch 2.0.1.

4.1.1. Data Cleaning and Preparation

2D normalized human poses were gathered using Yolov8 [31] with a required human
confidence level of 0.7 from the videos captured of human operators within the InHARD
dataset [14] as seen in Figure 6. As the 3D human poses were sampled at a rate exceeding
the frame rate within InHARD, the mean of all samples for each joint was computed during
each frame and used as a single value. These were then scaled by the position of the head, to
track the relative pose of the human. The 3D pose velocities were calculated by computing
the difference from the prior pose, with an initial velocity value of 0. Keras_NLP’s [30]
bert_large_en_uncased BERT Backbone is used to process and embed the Human-Readable
English (HRE) descriptions of each task, with examples of these descriptions for the 3D
joints in Figure 7.

Figure 6. An example of the 2D poses being extracted from the InHard Dataset recordings. Each
dot represents a joint labeled by Yolov8 [31] with the joint’s HRE description used as the Key
passed into the UCE and the joint’s x and y coordinates within the (quarter) frame used as the
corresponding Value.
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Figure 7. Example of each 3D joint and its corresponding HRE description. Originally Figure 5
from [14]. Obtained under License number 5957321463576 from IEEE, Copyright 2020 Mejdi Dallel.

4.1.2. General Hyper-Parameters

We use the suggested test-train split from InHARD, and created the model reserving
the first three sessions as validation while exploring architectures and hyperparameters.
The results in this paper are from a model trained on the entirety of the training set and
tested on the test set using the found hyperparmeters. Namely, Adam [38] was used as an
optimizer with a clip norm of 3, a learning rate of 1 × 10−4, and an epsilon of 0.01, with a
batch size of 1. All operations were performed with 32 bit floating point precision.

4.1.3. UCE/Intent-BERT Hyper-Parameters

ResNet 50 trained on ImageNet is used to perform feature extraction, taking an input
of (224 × 224) across an image of (720 × 1280) pixels. ED is set to 1024, Predmin and
Predmax are set to −5 and 5 respectively, and ϵ is set to 0.001. Additionally, we note that
the proposed Intent-BERT architecture supports using multiple time points when creating
the latent space by summing the inputs from each, but for this evaluation, we predict from
only one time point.

4.2. Next Task/Action Prediction

There are two outputs for each Task and Action, the embedded space and the recon-
structed tokens, which can be thought of as HRE words in this context. It is important to
note that the output tokens in Intent-BERT support the entire BERT uncased vocabulary of
30,552 classes (i.e., many possible tokens (∼30,000) exist that are not part of the InHARD
dataset, but may exist in other workloads). Intent-BERT outputs a series of these tokens, not
specific activity classes, unlike all prior work we are aware of. This allows for easy modifica-
tion and potential truely workload-agnostic models to be formed. We evaluate the success
of our trained model on these through several metrics: Perplexity [39], Per-Token Accuracy
(PTA), Top-3 Per-Token Accuracy, and Phrase Accuracy, which are compared in Figure 8.
Cross-Entropy (CE) is calculated on a per-token basis across each sequence. Perplexity is a
standard metric in NLP [39], which is simply the exponent of the CE. Perplexity represents
the model’s confusion between its choices but excludes all masked (empty) tokens. PTA is
the overall accuracy across all non-mask, non-reserved (e.g., beginning of sequence, end of
sequence) tokens. Top 3 PTA is the percentage of time that the correct token is in the top 3
guesses of the model at that position (again excluding non-mask, non-reserved). Finally,
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Phrase Accuracy is the model’s accuracy in reconstructing the entire HRE sentence of the
next Task/Action. The results of each for both Task and Action prediction can be found in
Table 2. Although Task prediction only has 14% Phrase Accuracy, it successfully predicts
the correct token for each position in the sequence within the top 3 candidates 80% of the
time. Meanwhile, Action recovery is completely correct in 41% of test instances, and has a
Top-3 PTA of 95%.

Figure 8. Comparison of PTA, Token Predictions, and Phrase Accuracy. Each token must match and
be included in the per-token metric to count for it, and Phrase Accuracy requires all tokens that are
included in the per-token metric to match.

Table 2. Token metrics for the proposed architecture, evaluated on the InHARD test set. CE denotes
Cross-Entropy and PTA Per-Token Accuracy.

Activity Perplexity PTA Top-3 PTA Phrase Accuracy

Task 3.3594 60.08% 80.14% 14.63%

Action 3.3593 60.08% 95.78% 41.69%

We also evaluate the similarity of the predictions’ embedded space to the true phrase’s
embedded space in Table 3. We use several metrics here, including LGL (Equation (2)),
Mean Square Error (MSE), Cosine Similarity (CS) and Mean Average Percentage Error
(MAPE). Cosine Similarity is a measure between −1 to 1, with higher being better, while all
other lower values for the other metrics indicate superior performance. In particular, the
MAPE is still fairly high, which indicates that there is room for improvement in aligning
the predicted embedded spaces with the true ones.

Table 3. Embedded space metrics, evaluated on the InHARD test set. MSE denotes Mean Square
Error, CS cosine similarity, and LGL Latent Gap Loss.

Activity LGL MSE CS MAPE

Task 6.924 0.6490 0.4377 927.71%

Action 4.867 0.2990 0.4728 598.1%

4.3. Activity Timing Prediction

Finally, we examine the results of our model in predicting the timing of each activity
change in Table 4. Intent-BERT is able to recover the time to activity switch within about
2 s of the switch, and the time that the human operator stops their current task to about 1 s.
It is important to note that there are non-negligible gaps between activities in the InHARD
dataset, which is why a single prediction for the switch is not used. e.g., The user may stop
their activity in 3 s but wait 7 s before the next starts.
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Table 4. Errors in predicting the time the current activity finishes and the next one begins.

Prediction Type MSLE MAE MAPE

Time to finish task 0.2765 1.263s 432.6%

Time to next task 0.4094 2.186s 702.3%

4.4. Timing Evaluation

On the stated test machine (without any LLM tokenization/embedding or cleaning
or preprocessing) Intent-BERT takes around 260 ms to predict the next action. Yolo8 pre-
processing and cleaning adds around 22 ms for a total of 282 ms without tokenization or
embedding. The current implementation of this tokenization/embedding in this work is
highly inefficient due to it being performed well prior to inference/training as a prepro-
cessing step, but NVIDIA has released a BERT model through TensorRT capable of 76 ms
inference on CPU only [40] Together, this comes to 358 ms for a single prediction on a
capable but older system without any quantization. With just over 40M parameters in the
entire Intent-BERT Model and 2M parameters in the UCE, this solution may be feasible for
pseudo-real-time (∼1 s) inference on higher-end edge devices.

4.5. Comparison of UCEs Against GPTs

The performance of human intention prediction via UCE vs standard state-of-the-art
LLMs such as GPT 4o-mini (version gpt-4o-mini-2024-07-18) was evaluated to further
highlight the strengths of UCE based embedding. Similarly to Section 4.2, the ‘Test’ split
of the In-Hard dataset was used for this evaluation. GPT 4o was accessed through the
OpenAI API version using an Assistant created with a temperature of 0.4 and the following
instructions Quote 4.5:

The user will give you data about a person’s body parts and positioning, this data
is given from a 3d perspective where you receive each body parts position in a x,
y, z, format and their rotations in an x, y, z format. You also get each body parts
position in a 2d perspective from multiple camera angles in an x,y format and
you get a confidence level. I then need you to tell the user what person observed
is doing and predict what they are about to do. You are to match each action to a
specific meta-action and action found in the file you were given. Take your time,
there is absolutely no rush I want the answer to be correct not quick.

PTA and EmbedLoss metrics were used to compute the difference in accuracy between
GPT and UCE based methods at predicting the next Action and Task a human will perform,
with the results in Table 5. PTA represents the word for word match between the evaluated
model and ground truth, and EmbedLoss represents the difference in meaning between the
two predictions. Intent-BERT and UCEsoutperformed the evaluated GPT model at every
metric. While GPT had around 11–12% accuracy in the PTA category, Intent-BERT had
an accuracy of 60%. GPT had a greater difference of around 4-5 tokens for both Task and
Action EmbedLoss analysis when compared to Intent-BERT.

Table 5. EmbedLoss (lower is better), PTA (higher is better), PSA (Phrase Accuracy) of Intent-BERT
and GPT 4o-mini on the test set of In-HARD. The best performance in each category is bolded.

Model Task
EmbedLoss Task PTA Task PA Action

EmbedLoss Action PTA Action PA

GPT 7.56 12.1% 0.19 % 7.73 10.9% 0.19%

Intent-BERT 3.47 60.1% 14.63% 2.78 60.1% 41.69%
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5. Conclusions
In conclusion, we present Intent-BERT and Universal Context Encoders as frameworks

for recovering human intentions from passive contextual data. This framework uses BERT’s
embedding of words to determine the relationships between Human Readable English
descriptions of the current action and the sources of data through our proposed Universal
Context Encoders. We use this framework to create an architecture and train it on the In-
HARD dataset, where it is able to correctly describe the next Action performed by a human
∼42% of the time. As this architecture predicts HRE descriptions of activities, our next
step will be to train it on datasets from across multiple workloads and domains, in order to
create a single flexible model to predict human intention in a variety of circumstances. In
particular, diverse and complex scenarios focusing on medical treatment or rehabilitation
would be an excellent test for UCEs/Intent-BERT. To further evaluate how UCEs adapt
to other modalities, additional types of data can be used in addition to or instead of the
pose data collected by In-Hard, such as modalities such as heart rate or other biometric
information for rehabilitative/medical contexts. This evaluation should be performed both
with and without additional retraining to further evaluate the generalization capabilities
of UCEs. Tests against Assembly 101 [41] and EPIC-Kitchens [42] datasets may also prove
insightful for generalization across tasks, though not across modalities.
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