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Deep Neural Network (DNN) is gaining popularity thanks to its ability to attain high accuracy and perfor-
mance in various security-crucial scenarios. However, recent research shows that DNN-based Automatic
Speech Recognition (ASR) systems are vulnerable to adversarial attacks. Specifically, these attacks mainly
focus on formulating a process of adversarial example generation as iterative, optimization-based attacks.
Although these attacks make significant progress, they still take large generation time to produce adversarial
examples, which makes them difficult to be launched in real-world scenarios. In this article, we propose a
real-time attack framework that utilizes the neural network trained by the gradient approximation method
to generate adversarial examples on Keyword Spotting (KWS) systems. The experimental results show that
these generated adversarial examples can easily fool a black-box KWS system to output incorrect results with
only one inference. In comparison to previous works, our attack can achieve a higher success rate with less
than 0.004 s. We also extend our work by presenting a novel ensemble audio adversarial attack and testing
the attack on KWS systems equipped with existing defense mechanisms. The efficacy of the proposed attack
is well supported by promising experimental results.
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1 INTRODUCTION

Deep Neural Network (DNN) has achieved great progress in various security-crucial scenarios,
including object detection, audio recognition and natural language processing[19, 20, 31]. Despite
its popularity, recent works have shown that the DNN model is vulnerable to adversarial exam-
ples. These examples can force the target DNN model to output incorrect results by adding some
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elaborated perturbation to original inputs. Existing studies on adversarial examples mainly focus
on image recognition tasks [4, 5, 18, 22, 24]. Nonetheless, adversarial examples in the audio do-
main have not received enough attention. The goal of these adversarial attacks is to add inaudible
noises to the audio, which can mislead Automatic Speech Recognition (ASR) systems with
high success rate. The adversarial attack can be divided into two categories: white-box attack and
black-box attack. In the white-box attack [7], the attacker can have full knowledge of the target
model, such as model structure or parameters. If the model is differentiable, then we can perform
a gradient-based method to find the perturbation using back-propagation. In the black-box attack,
the attacker has no access to the internal details of the target model but can observe the classifica-
tion outputs (e.g., label, confidence score) while offering random inputs.

There are also some existing works that claim to propose defense methods to enhance the robust-
ness of the target DNN model. The goal of these defense is to avoid the target model being misled
by the adversarial examples. Similar to Reference [3], we roughly divide these defense methods
into two categories: proactive defense and reactive defense. For proactive defense, the defender in-
creases the model robustness by modifying the model parameters or structures during the training
phase. The second category is reactive defense, where the defender adds the defense mechanism
after the model is trained, and the weight parameters of the trained model cannot be modified.

Although recent adversarial attacks have made significant progress, they remain impractical in
real-world ASR systems due to the following limitations:

e Due to economic and privacy concerns, an adversary usually cannot access the model

details such as structure or parameters . Also, since the pre-processing procedure (e.g.,

Mel-Frequency Cepstral Coefficients (MFCC) calculation) of an KWS system is non-

differentiable [40], it is difficult for an adversary to perform powerful white-box adversarial

attacks.

Though previous adversarial attacks can achieve high success rates and low perturbation

on ASR systems, they often take too much time to craft adversarial examples, which makes

them hard to perform a black-box adversarial attack in real-time scenario.

e The adversarial defense on ASR systems has already existed for a while, especially in the
audio pre-processing domain. Previous adversarial attacks mainly focus on attacking the
model without any defense mechanisms. When testing on the real-world system equipped
with defense methods, these attacks still cannot bypass these defense successfully.

To address these challenges, in this article, we propose a novel adversarial attack framework that
trains a neural network model (i.e., a generator model) to generate an adversarial example against
a KWS system in the black-box setting. By using the generator model, we only need one inference
to generate an adversarial example.

The main contributions of this article are summarized as follows:

e Unlike previous black-box attacks, which need a large amount of iterations to mislead the
DNN model, we generate audio adversarial examples by using a generator model. After train-
ing the generator model, we only need one inference to perform a real-time attack against
the black-box KWS systems.

e Since the attack is performed in the black-box setting, we cannot get the real gradient via
back-propagation. To solve this problem, we use a gradient estimator to approximate the
gradient of the loss with respect to the last second layer in the generator model. By doing
so, we can still successfully train the generator model.

e We further extend our generator model in the proposed attack framework. We first present
a novel ensemble attack that reformulates the objective function of the generator model by
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combining the losses from multiple target models. The proposed attack can fool multiple
KWS systems by a single adversarial example with high success rate. We then enhance the
robustness of our generator model by reformulating the objective function of the generator
model with additional loss terms against existing defense mechanisms.

e The experimental results show that our methods can reach faster generation speed and
higher attack success rates when compared to previous black-box attack methods against
KWS systems. Also, for ensemble attacks and attack enhancement, we can still achieve the
satisfactory success rate.

We organize the rest of this article as follows. Section 2 reviews some existing KWS systems
and some prior adversarial attack and defense works in the audio domain. Section 3 explains our
attack methods against KWS systems. We show the experimental results in Section 4 and conclude
this article in Section 5.

2 RELATED WORKS
2.1 Keyword Spotting System

A KWS system is often used for speech-based user interactions with some intelligent applications,
such as “Alexa” or “Siri” in a smartphone. Unlike other ASR systems, the KWS system focuses on
recognizing pre-defined keywords with a high recognition rate. Due to its low latency and small
power consumption, a KWS system has been widely used in some embedded systems. This high
applicability also encourages researchers to study KWS systems. It had first been mentioned in
Reference [30] as early as 50 years ago.

A KWS system mainly contains two parts: feature extraction and audio classification. The input
audio will first go through the feature extraction, in which MFCC is the commonly used techniques.
By converting the original signal into spectral coeflicients, we can extract the important features
in the frequency domain. In the classification, we will perform inference by feeding the features
into the classification model to make the final decision. Traditionally, Wilpon et al. [36] and Ros
et al. [27] use hidden Markov models (HMM:s) for KWS systems. Although this method gives a
high recognition rate, the high computation overhead during inference is the major shortcoming.
With the rise of deep learning, more and more research works like [12, 23, 34], use DNN models
as the main classifier. For instance, Zhang et al. [40] provide convolutional neural network
(CNN), deep neural networks (DNN), recurrent neural network (RNN), convolutional re-
current neural network (CRNN), and depthwise separable convolutional neural network
(DS-CNN) as the classification model in a KWS system. In our work, we will use these models
from Reference [40] as our target models.

2.2 Audio Adversarial Attacks

The audio adversarial attacks can be divided into two categories: white-box attack and black-box
attack. In the white-box setting, Carlini et al. [7] reformulate the objective function by adding
connectionist temporal classification (CTC) loss to original loss from Reference [6]. They fool
the DeepSpeech [17], which is a speech to text model from Baidu in the target attack. However,
the amount of perturbation is too large. To address this issue, Qin et al. [25] additionally uses the
psychoacoustic principle of auditory masking to filter out the sensitive range of frequency from
audio adversarial examples. Some works also mislead the model by attacking the white-box sub-
stitute model first and then transferring the adversarial examples to the black-box target model,
such as Reference [28], which performs a non-target attack to the audio classifier and transfers
to the different unseen models. However, the major problem is that we cannot ensure the attack-
ing quality during the generation of adversarial examples, which increases the risk of failure. So
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recently, most existing black-box attacks focus on attacking the target model directly. Alzantot
et al. [2] attack a black-box KWS system by using a genetic algorithm, which adds a small random
perturbation iteratively, and chooses the best result from the population. To perform the attack on
a speech to text system, Taori et al. [29] enhance the previous method from Reference [2] by using
gradient approximation.

The methods mentioned above take a long generation time for a single adversarial example by
iteratively optimizing the problem to find the solution, which gives no possibility for attacking in
real-time systems. One way to solve this problem is to perform a universal attack, which can ma-
nipulate all input data to the desired label by adding the same perturbation, such as Reference [35],
which creates the universal adversarial perturbation against the audio classifier in the white-box
setting. However, due to the high complexity to attack all input audio with one single perturba-
tion, the attack success rate is lower than 50% in their experimental results. To retain high attack
success rates and fast generation time, in this work, we train a generator model, which can map
all input audio to their corresponding perturbations within the time of one inference. The genera-
tion process is similar to the works from References [8, 14]. However, Chang et al. [8] can only be
performed in white-box setting, and Gong et al. [14] perform their attack for non-target cases. In
this work, we can perform a target attack against a KWS system in real-time. Even more, we can
perform our method in the black-box setting, which is more powerful than white-box attacks.

2.3 Audio Adversarial Defenses

The most common type of audio adversarial defense is to use input transformation [3]. The key
idea of this method is to perform some data pre-processing methods on the raw data to destroy the
adversarial perturbation before passing to the recognition model. Yang et al. [39] first performs
local smoothing, quantization, and down-sampling to defend the adversarial example generated
from Reference [2]. With higher quantization value, which rounds the amplitude of raw audio to
the closest integer, the adversarial example with smaller perturbation will be disrupted but it also
decreases the model accuracy for clean audio. To solve this problem, Rajaratnam et al. [26] ensem-
ble different audio pre-processing methods together for detecting adversarial examples. They use
the final prediction scores, which performs with and without the audio pre-processing method to
train the binary detector. If the given input has a high similarity between the prediction scores
with and without audio pre-processing, then it can be considered as clean audio.

3 METHODOLOGY
3.1 Overall Flow

In this part, we give an overview of our work. Our work is to train a generator model to gen-
erate the adversarial example against a KWS system in the black-box setting. When performing
inference, the generator model will generate perturbations for each input audio. The generator
model will first encode the audio into a low-dimensional latent vector and then decode it back to
a perturbation that has the same dimension as the input. The inference process is defined as

go(x) :x e X =0,
1
x'=x+9, 9
where 6 denotes the weights of the generator model g, § denotes the perturbation generated by the
generator model, x” denotes the adversarial example, and X is the audio dataset. After finishing
the training, we just need one inference to generate an adversarial example.
The training flow is similar to that of the traditional Generative Adversarial Network (GAN)
[15]. The only difference is that we treat the KWS model as a discriminator, in which the weights
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Fig. 1. Overall flow of the training procedure for the generator model.

are fixed. The training flow is shown in Figure 1. For each training iteration, we first perform in-
ference on a batch of training data to the generator model to get the corresponding adversarial
examples. Second, we feed these adversarial examples to our black-box KWS system to get the
confidence scores and calculate the loss, which will be described in Section 3.3. Third, we update
the weights of the generator model. However, due to black-box settings for the KWS system, we
cannot update the weights by back-propagation. To solve this problem, we use gradient approxi-
mation, which will be introduced in Section 3.4, to simulate the gradient of the loss with respect
to the weights. The training will stop after reaching the predefined max training epoch.

3.2 Generator Model Structures

We adopt two different model structures in this work. These models are an auto-encoder-based
model. Unlike applications in the image domain, the audio domain has some different pre-
processing ways to extract the features. Fast Fourier transform (FFT) and short-time Fourier
transform (STFT) are the two most famous audio pre-processing strategies. So, we respectively
use them to be the pre-processing layer in our two generator models. The details of the models are
shown in Table 1, where abs denotes the absolute value function. We use tanh as the activation
function.

3.2.1 FFT-NN. The first layer of the FFT-NN model is a FFT layer, which is used as a feature
extraction stage. FFT can transform the sequence of values into different frequency components.
After performing FFT, the original time-domain audio with length 16,000 will be converted to
frequency-domain features with size 8,001. Then, we connect the FFT layer to three dense layers,
where the sizes of the dense layers are 8,001, 200, 16,000, accordingly. The FFT and the first and
second dense layers can be treated as an encoder, which learns the low-dimensional representation
for the given data. We empirically observed that two dense layers are adequate for the encoder. The
last layer can be treated as a decoder, which decodes the latent space features back to time-domain
perturbation.

3.2.2 STFT-CNN. Different from the FFT-NN model, we use a STFT as a feature extraction stage.
It first uses a sliding window to cut the audio into time frames and applies Fourier transform
to extract the frequency and phase features for each frame. Compared to FFT, STFT keeps time-
dimensional information, which makes it more powerful to extract useful features in audio. We
set the frame step, frame length, and FFT size to 200, 800, 256, respectively.

After performing STFT, the original time-domain audio with length 16,000 will be converted to a
2D time-frequency spectrum feature with size 77 X 129 and fed into a CNN. The CNN is composed
of three convolution layers, one max-pooling layer, which can be considered as an encoder, and
one dense layer for the decoder. The filter width, filter height, input channels and output channels
for layer one to three are (3,3,1,24), (3,3,24,24), (1,1,24,1), respectively. Pool height, pool width, and
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Table 1. Two Kinds of Generator
Model Structures

P.-H. Huang et al.

Structures
FFT-NN STFT-CNN
abs(FFT) abs(STFT)
l )
Dense(8001) | Conv(3,3,1,24)
3 )
Dense(200) | Conv(3,3,24,24)
l l
Dense(16000) | Conv(1,1,24,1)
l l
tanh MaxPool(3,3,2)
)
Dense(16000)
)
tanh

strides are (3,3,2) and the size of the dense layer is 16,000. All the settings were obtained through
experiments.

3.3 Objective Function

We further train each generator model by optimizing against the KWS system. The following is
the optimization problem:

argmin Z (lossy (x) + ¢y - lossy(x)),
0 xeX (2)
where x” = x+gg(x).

Here, x denotes an audio for training, and we define lossi(x) = [|go(x)ll, which denotes the
Euclidean distance between the audio adversarial example x” and the clean audio x. We use loss;
to minimize the amount of the perturbation to make the adversarial example hard to be recognized
by the human. The objective of loss;(x”) is to reflect the attack strength of the given x’, which is
explained in Reference [9]. We use loss; to enhance the attack success rate in our method. The
¢y > 0 is a regularization parameter that controls the trade-off between the attack success rate
and the amount of perturbation. With larger ¢y, the optimizer will put more effort on optimizing
loss, and increase the attack success rate. For the target attack, by assuming ¢ is the target label,
lossy(x”) is defined as

fossy (') = (max(log(F(') = Log(F('),) + R) ©)

For non-target attack, by assuming j is the original label of audio x, loss;(x”) is defined as

lossy(x") = (log(F(x')j) - rrl;;izjx(log(F(x’)i)) + R) . (4)

Here, F denotes the black-box KWS system, and F(x’);/F(x’); denotes the confidence score of
label i/t after inferring x” on F. We use a non-negative constant R to control the attack confidence.
The generator model will tend to create an adversarial example with a higher confidence score
if using larger R. Taking target attack as an example, if R is larger, the gap will become larger
between F(x’); and F(x’);, and it will cause the confidence score of target label ¢ to become higher.
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The optimizer will do more efforts towards minimizing larger loss,, and make loss1 harder to
converge. This will lead to larger loss;. Also, we found that the label with the largest softmax
score will dominate other labels. To loosen this effect, we use log as a scaling function to change
the range of confidence score from [0, 1] to (—oo, 1].

3.4 Gradient Approximation

In this part, we explain how to perform gradient approximation. Because the gradient of loss; can
be directly obtained by back-propagation, we only need to estimate the gradient of loss,. Each
generator model is a composite function, and it can be seen as the multiplication of sub-functions
in each layer, which is formulated as

go(x) = tanh(gm(gm-1(. . - g1(x,01) . . ., Om—1), Om)), (5)

where g; is the ith sub-function of gy from layer 1 to m, and 0; is the weights of g;. Because gy
is the sub-function of loss,, by chain rule, the partial derivative of loss, with respect to the model
weights 0 can be formulated as

Oloss; [Blossz Oloss;

00 a0, > a6, ©)
_ | 0loss, Ogm g 0lossy Ogm
| Ogm Ogm- 06, Bgm 00m |

where g, denotes the last dense layer densep before the activation layer tanh of the generator

model (i.e., the last second layer of the generator model). To simplify the representation of the

equation, we denote 6160552 = 632‘;;;6 adznesee . We only need to compute 6(31;)’:;56

by using gradient

approximation. And for M‘;%, we can directly compute it by back-propagation. The reason we

use the denseg layer is to avoid computing the gradient of the tanh layer, which is much harder to
approximate. If the approximation error is too large, then the deviation of the gradient will become
larger after the back-propagation, which will make the generator model harder to converge.

Current black-box attacks like [9, 10, 21, 33] have been applied in the image domain. Refer-
ence [9] first uses the symmetric difference quotient method to approximate the gradient. But it
takes a long time to generate the adversarial example. To accelerate the speed of gradient approx-
imation, Reference [33] uses a scaled random full gradient estimator to approximate the gradi-
ent, which is also called auto zero-order optimization attack. Reference [10] merges the gradient
approximation concept from Reference [33] into the adaptive momentum method, and remains
higher accuracy than Reference [33]. But it also sacrifices the generation speed of the adversarial
example. Reference [21] combines the alternating projected stochastic gradient descent method
with the zero-order-based gradient estimator to generate the adversarial example. However, all
these attacks are iterative-based attacks, which iteratively take a long optimization time for gener-
ating an adversarial example. They can not perform the attack in constant time. In our work, we
just need one inference to perform the black-box attack in real time.

We have tried to use the symmetric difference quotient method to estimate the gradient of loss;,
which also is used in Reference [9]. The ith component of estimated gradient %ﬂfﬁg is formulated

as
lossy (x + tanh(denseq(x) + he(;)))

grad;y = o7
B lossy(x + tanh(denseq(x) — he(;))) ™)
2h
0lossy
~ Odenseg’
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where h denotes a small constant value and e(;) denotes a standard basis vector with the ith element
set to 1. However, when the input dimensions are large, this method takes large query times on
the KWS system. In our case, we need to query 32,000 times for each single input audio.

To increase query efficiency, we use averaged random gradient estimation, which is a scaled
random full gradient estimator from Reference [33]. We use it to estimate the gradient of loss,.
The idea of averaged random gradient estimation is to estimate the average of ¢ random directions,

which is formulated as
q

1
grad = — Z grady. (8)
1=

For each random gradient, grady is formulated as

(lossz (x + tanh(denseq (x) + Pux))
gradi = b -
b ©)
lossy(x + tanh(denseg (x))))
— . uk?
B
where uj is a random unit-length vector, with |lux]l = 1, f > 0 is a smoothing parameter, and

b is a scaling parameter that balances the magnitude and estimation error for the approximated
gradient. If q is getting larger, then the estimation error will become smaller. We will show the
effect of different ¢ in Section 4.2.

The detailed training process is shown in Algorithm 1. For each generator model, the goal is to
find the optimized 0", which can minimize the total loss of the validation dataset. 0 is the current
weights of the generator model. N, is the number of epochs for training. The b, g, and f are the
parameters for gradient estimator in step 7. Xp4scp is the batch data from training dataset Xy gin.
Steps 4—8 show the update progress for the weights 6 by integrating actual/approximated gradients
for lossy/losss.

ALGORITHM 1: Training process of the generator model.

Input: Black-box KWS system F, training data set X;,4in, validation data set X, 4;;4, generator
model gg, last second layer of generator model densey, weights 0, the parameters of gradient
estimator {b, g, f}, the number of the training iterations N,

Output: Optimized weights 0*

1: forn =1to N, do
2: for each xp4scp in Xypgin do

3 Generate adversarial examples x}mtch = Xparch + 90 (Xbarch)

4: Compute loss; (Xparcn) and ¢y - lossz(x;mtch)

5 Obtain the gradient grad,.q; of loss; with respect to weights 6 by back-propagation

Oloss; .
6: Compute ———— by Equations (8) and (9)
ddensey
7 Obtain approximated gradient grada,prox of loss; with respect to weights 0 by
Equation (6)

8: Update weights 6 by ADAM optimizer with grad,.q; + c1 - gradapprox

9: end for
10: if loss of X, 41i4 decreases then
11: Save current weights 0 to 0”
12: end if
13: end for

14: return 6
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Fig. 2. The flow for ensemble attack.

3.5 Ensemble Attack

In this part, we introduce how to attack multiple KWS models at the same time. Inspired by en-
semble learning [13], we add the losses of different target models together. The ensemble loss is
formulated as

J
loss(x Z Y- loss’ (x), (10)

where loss/(x) denotes the loss; of jth model, y; denotes a weighted parameter, which controls
the relative importance between different models, and ] is the number of target models. By using
ensemble loss, we do not need to train J generator models separately. The flow is shown in Figure 2.
To increase multiusability, we also transfer the ensemble attack to different unseen models. We will
show the transferability of the adversarial examples generated by the proposed ensemble attack
in Section 4.4.

3.6 Enhancement for Attack Robustness

In this part, we introduce how to enhance the performance of the adversarial attack against exist-
ing defense methods on the KWS system. Similar to the adaptive attack [32] on the image domain,
we also assume that attackers know the details of the defense. However, we are not attacking the
model with defense mechanisms directly. We reformulate and add some constraints to our objec-
tive function and attack the original unchanged target model. Different from adaptive attack [32],
we can attack the model successfully no matter whether the defense exists or not. After finishing
training, the adversarial example generated from the generator model will become more robust.
We enhance our attack against pre-processing-based defense mechanisms [39] and statistic detec-
tion with Gaussian noise [38] in this work. The first defense mechanism [39] mitigates the audio
adversarial examples by three audio pre-processing strategies before the inference. The second de-
fense mechanism [38] detects whether an input is an adversarial example by using the Set-Indiv
Variance (SIV) Measurement.

3.6.1 Mitigating Perturbation with Audio Preprocessing. For the audio pre-processing-based de-
fense [39], the first pre-processing method is downsampling. In digital signal processing, by reduc-
ing the sampling rate of the signal, we can reduce the data size with low effects on the quality of the
original signal. In this situation, the perturbation in the adversarial example would be mitigated
during this process. Based on the sampling theorem in digital signal processing, the frequency
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range of the sampled audio is half of the sampling rate. The perturbation will be filtered out, when
the perturbation’s frequency is outside this range. To prevent the audio adversarial example from
being destroyed during downsampling, we limit the range of the perturbation’s frequency by alow-
pass filter LPF. After adding the low-pass filter to the perturbation, the new adversarial example
is formulated as

x" = x + LPF(go(x)), (11)

where LPF(gg(x)) denotes the pertrubation after low-pass filter.

The second pre-processing method is local smoothing, which smooths the audio x by re-
placing the ith audio sample x; with the median value in the sliding window sequence
[Xi—k+1s -« - s Xis - s Xizk—1] With length 2 X k — 1. After smoothing, any data point that is higher
than the median point will be reduced, and the lower ones will be increased. To prevent the per-
turbation being eliminated during local smoothing, we add the total variation loss [11] to smooth
the adjacent sampling points to reduce the impulses in the perturbation, which is formulated as

d-1

> expllgo(x)inr — gox)il))|

i=0

TV(go(x)) = (12)

where d is the size of audio x, gg (x); denotes the ith sampling point of the perturbation gy (x), exp is
the exponential function to amplify the difference of the adjacent sampling points. By amplifying
the difference of adjacent sampling points, we can decrease the impulse and make the perturbation
smoother in the adversarial example.

The third pre-processing method is quantization, which can convert a continuous range of value
into discrete value. The way to quantize the signal is to round the signal to the closet integral multi-
ple of quantization value q. To prevent the perturbation being undermined during the quantization
process, we add the quantization error loss to the objective function, which is formulated as

Quan(gg(x)) = |[round(ge(x). Q) = go()|. (13)

where Q is the quantization value and round is the function for rounding.

3.6.2 Statistic Detection with Gaussian Noise. We will give a brief overview of the second de-
fense method [38]. This work is first applied to 3D point cloud classifiers. We leverage this defense
concept to the KWS system. Each input data (adversarial or clean) will first be added with the
white Gaussian noise to generate a set of m perturbed data, and each of perturbed data pert_x; is
formulated as

pert_x; =x+p;

s.t. pi ~ N(0, 7). (14)

Here p; is from the normal distribution N(0, 0%). Then, the set of confidence scores o/ of pert_x;
will be computed, which is defined as

0} = {0;,170;,2’--~v0;,cv-~-’0;,c}’ (15)
where C denotes the numbers of classes, and o] , denotes the score in class ¢ of input pert_x;. If the
input is clean audio, then og Do 0; c should be similar. In contrast, if the input is adversarial, then
0] 1s-ens o; ¢ might differ a lot. Next, we will use SIV to measure the diversity of the confidence

scores for each input audio x, which is defined as
e
SIV(x) = = CZ:; Var (o] J1<i<m), (16)
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where Var(og’cll < i < m) denotes the variance of class ¢’s confidence set {oic, e, o;n’c}. Finally,
we will set different Defense Detection Rate (DDR) (%) to measure how many adversarial ex-
amples are correctly detected while t% of clean audio is not detected successfully. With higher
DDR, the detection effect of adversarial example will become higher. However, it also increases
the false positive rate of clean audio.

After limiting the frequency range of the adversarial example by using LPF, the amplitude of
lower frequency will gradually increase, which makes the Gaussian noise less effective to disturb
the adversarial example. By doing so, the SIV of adversarial example will become more similar to
the clean audio, and make it hard to be detected.

3.7 Enhanced Objective Function

By considering all the losses together, the optimization problem is formulated as

argmin Z (lossy(x) + ¢1 - Lossy(x") + ¢3 - TV(LPF(go(x))) + ¢3 - Quan(LPF(gp(x)))),
0 xeX (17)
where x" = x + LPF(gg(x)).

Here, c; and c3 are the parameters to control local smoothing loss and quantization error. Same
as lossy, the gradients of TV and Quan can be directly obtained by back-propagation.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

In the experiment, we attack seven KWS system models: DS-CNN, LSTM, L_LSTM, CNN, DNN,
GRU, CRNN from Reference [40], each of which is an audio classifier, and their accuracy rates
are 94.4%, 92.0%, 92.9%, 91.6%, 84.6%, 93.5%, and 94.0%, respectively. We use the DS-CNN as the
target model in Sections 4.2, 4.3.1, and 4.5. For the ensemble attack experiment in Section 4.4, we
use all seven models as the target models. For the comparison against existing white-box attacks
in Section 4.3.2, we use self-trained differentiable DS-CNN as the target model, because it has the
highest accuracy on keyword-spotting tasks.

The data set we use is Google common voice data set [1]. The data set contains ten different
keywords: yes, no, left, right, on, of f, go, stop, up, and down. When targeting class t, we use
the other nine classes for training and testing. For non-target attacks, we utilize all ten classes
for training and testing. We choose 1, 680 audio for training, 300 audio for validation, and 50 au-
dio for testing for each class. We use the signal-to-noise ratio (SNR) as the evaluation metric
of perturbation, which is also used in Reference [37]. A higher SNR denotes a smaller perturba-
tion. We apply two NVIDIA GeForce RTX 2080Ti GPUs and an Intel i7-8086K 4 GHz CPU with
64 GB RAM to perform the experiments. The TensorFlow is utilized in this article to implement
our adversarial attack methods. We use ADAM as the optimizer and set an initial learning rate
to 0.001 with a decay rate 0.96 for each epoch. N, is set to 100. The averaged random gradient
estimation is used as our gradient estimator. We set f = 1/16,000 and b = 800.

4.2 Performance Against Different g and ¢,

Generally, by using more random directions (setting g larger in Equation (8)), the variance of gra-
dient estimation will become smaller. But when q is getting larger, it also increases the cost of the
model query. Figure 3 shows loss; (reflecting perturbation) and loss; (reflecting attack success rate)
against training epoch for different q. The results suggest that by using a larger g, we can have a
smaller loss; and loss,. Furthermore, it also speeds up the convergence while training. We set g to
40 in the rest of the experiments.
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Fig. 4. Illustration of attack result with different ¢; (target label yes).

To find the best trade-off between SNR and attack success rate, we test ¢; with 0.1, 1, 10, and
100. The result is shown in Figure 4. To have the attack success rate at least 90%, and SNR as high
as possible, we let ¢; be 10 and it will be used in Sections 4.3 and 4.4.

4.3 Performance Comparison with Prior Work

In our work, we use two different model structures: FFT-NN and STFT-CNN for the generator
model. We compare the performance of these two structures in Table 2. In Table 2, SR means
the attack success rate, and time means the generation time for a single adversarial example. We
conduct target and non-target attacks in this experiment. Although the generation time and model
size of FFT-NN is slightly faster and smaller than those of STFT-CNN, the attack success rate and
SNR of STFT-CNN still outperforms the FFT-NN model by 3.9% and 6.3 dB on average. The reason
for better performance on STFT-CNN may be due to the additional time frame information in the
time-frequency spectrum feature, while FFT only contains frequency domain information.

4.3.1  Comparison of Black-box Attacks. Next, we compare our attack with [2], which uses the
genetic algorithm (GA) to generate adversarial examples against the KWS system in the black-
box setting. We make a comparison on the same testing data and attacking scenario. We set the
maximum iteration, population size, perturbation limit, mutation probability to 500, 20, 256, 0.0005,
respectively, which are the same as the parameters set in Reference [2]. The results are also shown
in Table 2. As we can see, GA has a similar attack success rate and smaller perturbation against FFT-
NN on average. However, because GA performs many iterations to find the solution, the generation
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Table 2. Results Generated by FFT-NN, STFT-CNN, and Genetic Algorithm (GA)
Tarcet Iabel FFT-NN STFT-CNN GA [2]
& SR | SNR (dB) | time (s) SR | SNR (dB) | time (s) SR | SNR (dB) | time (s)
yes 0.893 | 11.138 | 0.0023 || 0.953 | 17.676 | 0.004 || 0.895 | 11.581 | 38.7976
no 0.909 | 10.522 | 0.0023 || 0.931 | 16.837 | 0.0039 || 0.933 | 12.332 | 34.8646
left 0.9 | 10521 | 0.0023 || 0931 | 17.325 | 0.004 |[ 0.924 | 13.89 | 35.7622
right 0.9 | 12.145 | 0.0024 || 0.936 | 18.588 | 0.0039 || 0.918 | 12.62 | 34.4678
on 0.896 | 7.825 | 0.0023 || 0.933 | 15704 | 0.0039 || 0.8 | 11389 | 52.1016
off 0.847 | 9.989 | 0.0023 || 0.933 | 16.847 | 0.0039 || 0.818 | 13.418 | 41.4478
go 0.907 | 11.281 | 0.0023 || 0.92 | 17.796 | 0.0039 [[ 0.927 [ 13.508 | 29.2759
stop 0.844 | 11.027 | 0.0023 || 0.927 | 15385 | 0.0039 || 0.927 | 15.138 | 24.9632
up 0.889 | 10.012 | 0.0023 [[ 0.909 | 16.732 [ 0.0039 [[ 0.824 | 12572 | 43.492
down 0.938 | 11.497 | 0.0023 || 0.938 | 16.953 | 0.0039 || 0.971 | 13.375 | 25.5109
| Average [0.892] 10.596 | 0.0023 [[0.931 [ 16.823 [ 0.0039 [[ 0.894 | 12.983 [ 36.0684 |
| Non-target [ 0.772 [ 7.230 | 0.0023 [[ 0.948 | 17.445 [ 0.0039 [[0.938 | 19.159 [ 19.2826 |

Average is for target attack.
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Fig. 5. Illustration of the waveforms (top row, x-axis: time, y-axis: amplitude) and STFT features (bottom row,
x-axis: frame, y-axis: frequency) in a clean audio (first column) and its adversarial audio (original label: stop,
target label: yes) generated by STFT-CNN (second column), FFT-NN (third column), GA (fourth column).

time is dramatically larger than our method. Except for the target labels no, go, down, the attack
success rate of STFT-CNN is higher than GA in the other seven labels, and the average success
rate is 3.2% higher for the target attack. Also, the STFT-CNN remains higher SNR for target attack,
and the generation time is less than 0.004 s. We will use STFT-CNN as the generator model in
Sections 4.4 and 4.5. The visualized waveforms and the STFT features of a clean audio and its
adversarial examples are shown in Figure 5. According to the figures, the perturbation generated
by STFT-CNN is slightly smaller than the other methods.

4.3.2  Comparison of White-box Attacks. We also compare our method with the existing white-
box attacks: FGSM [16], C&W [6], and RNN attack [8]. For the FGSM attack, we set €, which is
a parameter to control the magnitude of the perturbation, to 0.0001. The concept of the FGSM is
to calculate the partial derivative of the loss function with respect to the input data only once, to
get the perturbation. For the C&W attack, we set the binary search step to 9 and iteration number
to 800. The concept of the C&W attack is to execute many iterations to find the perturbation. For
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Table 3. Comparison between White-box Attacks and Our Black-box Attack

White-box Black-box
Target label FGSM [16] C&W [6] RNN attack [8] STFT-CNN
SR | SNR (dB) | time(s) | SR | SNR (dB) | time (s) | SR | SNR (dB) | time (s) SR | SNR (dB) | time (s)

yes 0.131 27.079 0.015 0.979 27.703 43.71 0.95 24.548 0.095 0.938 15.033 0.004
no 0.084 26.673 0.015 0.973 25.093 44.659 | 0.95 21.021 0.096 0.931 14.036 0.004
left 0.105 25.444 0.011 0.968 24.942 43.706 0.96 23.385 0.096 0.942 15.019 0.004
right 0.185 27.393 0.015 0.976 29.249 43.727 0.96 28.003 0.096 0.924 16.519 0.004
on 0.129 26.637 0.015 0.962 26.935 43.647 | 0.95 23.669 0.096 0.901 15.616 0.004
off 0.069 27.357 0.015 0.979 26.065 43.634 | 0.95 24.521 0.096 0.908 15.319 0.004
go 0.125 26.743 0.011 0.963 27.508 43.664 0.95 24.74 0.096 0.931 14.097 0.004
stop 0.095 26.402 0.015 0.988 25.18 43.742 0.96 25.7 0.096 0.914 14.198 0.004
up 0.116 26.233 0.015 0.971 26.816 43.645 0.96 24.231 0.096 0.901 15.992 0.004
down 0.09 25.75 0.015 0.979 23.712 44.971 0.96 25.06 0.097 0.923 15.452 0.004

[ Average [0.113] 26571 [ 0014 [0974] 2632 [ 4391 [0.955] 244838 | 0.09 [[0.921] 15129 | 0.004

the RNN attack, we set the parameter ¢ to 0.01 and training epoch to 30, which are the same as
those in Reference [8]. Our objective function is similar to the C&W and RNN attack, which are
also optimizing the amount of perturbation and attack success rate.

The results are shown in Table 3. Compared to the fastest white-box FGSM attack, the generation
time and attack success rate of our method are both better than the FGSM attack. The attack
success rate of the FGSM attack is 11.3%, showing that generating perturbation by calculating
partial derivative only once is still too complex in this problem. Compared to the C&W attack,
the attack success rate of our method only drop 5.3%. It shows that our work can achieve similar
attack performance compared to the white-box C&W attack. Also, by using the auto-encoder-
based model, the execution time is more than 24 times faster than the RNN attack with 3.4% SR
and 9.359 dB SNR decreased overhead. Note that a more complex generator structure may lead to
higher SNR, but it also increases the attacking time. How to find a proper generator structure to
trade off the SNR and execution time is worth investigation in the future.

4.4 Experimental Results for Ensemble Attack

In this part, we show the results of attacking multiple target models simultaneously. We perform
non-target attack in this experiment. We use four models for ensemble attack and transfer the at-
tack to each of the other three models. We use five kinds of combinations according to these seven
KWS system models in this experiment. To balance the attacking effect, we set the parameter y; to
1 for each target model in Equation (10). The results are shown in Table 4. We can see various vul-
nerability among different models. Compared to the results of attacking a single DS-CNN model in
Table 2, the SNR decreases by 4.687-7.624 dB. However, the attack success rate increases 0.6-2.6%
on ensemble attack, which shows that attacking multiple models together also can improve the
attack performance.

For the results of the transfer attack, the attack success rate will decrease. The results show
that the attack success rate is worst in the CRNN model. It indicates that the prediction boundary
of the CRNN model is much more different than other target models, which makes it harder to
attack. The performance of the transfer attack is heavily dependent on the similarity between the
actual target model and the substitute target model. In Table 4, an ensemble model can be treated
as the substitute target model, and a transfer model can be treated as the actual target model.
Because the attack success rates between the substitute target model and the real target model
are not similar, it shows the vulnerability of the transfer attack. In other words, transfer attack
cannot easily control the attack stability appropriately.
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Table 4. Results of Ensemble Attack

Ensemble Model (SR) Transfer Model (SR) SNR

LSTM | L_LSTM CNN DNN | DS-CNN | GRU | CRNN

0.922 0.95 0.91 0.94 0.876 0.892 | 0.558 9.821
DS-CNN | L_LSTM CNN DNN | LSTM GRU | CRNN —

0.954 0.928 0.928 0.964 0.754 0.834 | 0.576 | 12.758
DS-CNN | LSTM CNN DNN | L_LSTM | GRU | CRNN —

0.968 0.908 0.94 0.926 0.758 0.824 | 0.546 | 11.314
DS-CNN | LSTM | L_LSTM | DNN CNN GRU | CRNN —

0.972 0.926 0.932 0.936 0.726 0.864 | 0.412 | 11.355
DS-CNN | LSTM | L_LSTM | CNN DNN GRU | CRNN —

0.976 0.928 0.952 0.9 0.678 0.89 0.582 | 10.985

4.5 Experimental Results for Attack Enhancement

We also train the generator model against the original unprotected target model directly and
then transfer the attack to the target model, which is equipped with one of the existing defense
mechanisms. We choose pre-processing-based defense mechanisms from Reference [39], and
statistic detection with Gaussian noise from Reference [38]. We perform the non-target attack in
this experiment.

4.5.1 Mitigating Perturbation with Audio Preprocessing. We use different parameters for the pre-
processing-based defense mechanisms, and their values are chosen based on Reference [39] and
our empirical observation. For quantization value, we set it to 128, 256, 512, and 1,024, respectively.
For local smoothing window size 2 X k — 1, we set k to 2, 6, 10, respectively. For the sampling rate
used for down-sampling, we set it to 8,000 and 4,000, respectively. For the attack enhancement
parameters, we set the frequency range of low-pass filter to 4,000 Hz and quantization value Q
to 16. We set ¢y, ¢z, and c3 to 40, 0.02, and 0.2. The experimental result is shown in Table 5. For
quan_128, Median-2, down_sample-8000, for which the pre-processing effect is relatively small to
the audio, the defense is only effective to the GA attack. The reason may be that the GA attack
did not minimize the amount of norm-2 perturbation, which causes the signal of perturbation to
become rougher, and easy to be destroyed during local smoothing, quantization, or downsampling.

After adding the attack enhancement to the original objective function, the attack success rate
of the normal non-defense model will slightly decrease around 4%. The reason is due to additional
loss terms for audio smoothing and quantization. However, when the effect of pre-processing be-
comes larger, the enhanced STFT-CNN method can have a much higher attack success rate. When
it comes to quantization-based defense with the largest quantization value 1,024, the attack suc-
cess rate of enhanced STFT-CNN still remains 88.2%, and original STFT-CNN only has 22.6%. For
local smoothing defense, the enhanced STFT-CNN can remain a relatively higher attack success
rate than the other attacks for each value of k. Because we add the quantization error loss to the
objective function, the signal of the adversarial example created from our method is smoother. In
contrast, the other attacks without adding quantization error loss will create some impulse and
jagged signal. So the perturbation created from the other methods is easier to be eliminated by
local smoothing defense. This is why our attack success rate can remain higher than the other
attacks. For the downsampling-based defense, the attack success rate of the original STFT-CNN
method drops to only 76.4%. However, after the attack enhancement, the attack success rate only
drops to 89.0%. In general, after adding the attack enhancement, our attack method can become
more robust against the pre-processing-based defense.
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Table 5. Results of Attack Enhancement Against
Pre-processing-based Defense

SR

Defense Enhanced STFI-CNN | STFI-CNN | GA [2]
Normal model 0.904 0.948 0.938
quan_128 0.902 0.944 0.291
quan_256 0.9 0.938 0.219
quan_512 0.902 0.872 0.204
quan_1024 0.882 0.226 0.277
Median-2 0.862 0.85 0.027
Median-6 0.588 0.42 0.2044
Median-10 0.654 0.644 0.468
down_sample-8000 0.91 0.946 0.666
down_sample-4000 0.89 0.764 0.699
[ mix(512, 2, 8000) | 0.726 0316 0.225

Table 6. Results of Attack Enhancement Against Statistic
Detection with Gaussian Noise

Enhanced STFT-CNN
Variance le-6 | 5e-6 | le-5 | 5e-5 | le-4
FNR (DDR =5%) | 0.992 | 0.994 | 0.993 | 0.996 | 0.986
FNR (DDR = 10%) | 0.982 | 0.986 | 0.983 | 0.987 | 0.952
STFT-CNN
Variance le-6 | 5e-6 | le-5 | 5e-5 | le-4
FNR (DDR =5%) | 0.991 | 0.979 | 0.972 | 0.745 | 0.705
FNR (DDR = 10%) | 0.976 | 0.961 | 0.944 | 0.655 | 0.621
GA [2]
Variance le-6 | 5e-6 | le-5 | 5e-5 | le-4
FNR (DDR =5%) | 0.772 | 0.818 | 0.867 | 0.928 | 0.939
FNR (DDR = 10%) | 0.312 | 0.555 | 0.695 | 0.843 | 0.866

4.5.2 Statistic Detection with Gaussian Noise. For statistic detection with Gaussian noise, we
report the false-negative rate (FNR) of the detection in Table 6.

We set DDR to 5%, 10%, and ¢ to 1e — 6, 5¢ — 6, 1le — 5, 5¢ — 5, le — 4, respectively. We use the
clean audio to define the threshold, and only use the adversarial example, which can attack the
model successfully for testing. For small variance value le — 6, the detection is effective against
the GA attack, by dropping the FNR to 31.2%, when DDR is set to 10%. When variance value is
getting larger, the method without robust enhancement will become vulnerable to the detection;
For example, the FNR is dropped to 62.1%, when DDR and variance value are set to 10% and le —4,
respectively. In contrast, after adding the attack enhancement, the enhanced attack can remain
high FNR (above 95%) in a different range of variance values.

4.5.3 Remarks. The results show that our attack can become more robust against these defense
methods, after adding these constraints. However, it also increases the amount of perturbation,
which gives more risk to be perceived by a human.
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5 CONCLUSION

We introduce a powerful black-box adversarial attack method in this work, which can successfully
misclassify a KWS system to the incorrect label, showing that our work can evaluate the vulner-
ability of a given DNN-based audio classifier. We adopt an auto-encoder-based generator model,
which combines the audio pre-processing layer with a neural network for generating malicious
perturbations. Furthermore, we present a gradient estimator and integrate it into the generator
model during the training process, which gives us a chance to generate an adversarial example in
real-time for the black-box setting.

The experimental results show that our method can generate an adversarial example within
0.004 s and achieve high attack success rate and low perturbations. Compared to an existing
method, the target attack success rate and SNR are higher by 3.7% and 3.841 dB, respectively.
Besides, we also extend our method to attack multiple models by ensemble attack with high at-
tack success rate and transferability. Also, after adding the terms of low-pass filter, quantization
error and local smoothing to the objective function, we can have a satisfactory attack success rate
against the audio pre-processing and statistic detection-based defenses.

Our methods still have some limitations that can be improved. One limitation is that we need
large query time for training in black-box setting. The number of queries is nearly 61,992K for
training a single generator model, which is a time-consuming task even accelerated by GPU. In
the experiments, we discover that some adversarial example can be easily perceived by the listen-
ers because of the large perturbation, which means that we still have room for improvement on
generating a more imperceptible adversarial example. Possible future works include discovering a
more effective way to reduce the training cost of a generator model and improving the impercep-
tibility of generated adversarial examples.

REFERENCES

[1] Speech commands dataset. Retrieved from https://research.googleblog.com/2017/08/launching-speech-commands-
dataset.html.

[2] Moustafa Alzantot, Bharathan Balaji, and Mani B. Srivastava. 2018. Did you hear that? Adversarial examples against
automatic speech recognition. Retrieved from https://arxiv.org/abs/1801.00554.

[3] Chakraborty Anirban, Alam Manaar, Dey Vishal, Chattopadhyay Anupam, and Mukhopadhyay Debdeep. 2018. Ad-

versarial attacks and defences: A survey. Retrieved from https://arxiv.org/abs/1810.00069.

Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern

Recogn. 84 (2018), 317-331.

[5] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P’17). 39-57.

[6] Nicholas Carlini and David A. Wagner. 2017. Towards evaluating the robustness of neural networks. In Proceedings
of the IEEE Symposium on Security and Privacy (SP’17). 39-57.

[7] Nicholas Carlini and David A. Wagner. 2018. Audio adversarial examples: Targeted attacks on speech-to-text. Re-
trieved from https://arxiv.org/abs/1801.01944.

[8] Kuei-Huan Chang, Po-Hao Huang, Honggang Yu, Yier Jin, and Ting-Chi Wang. 2020. Audio adversarial examples

[4

[l

generation with recurrent neural networks. In Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC’20). 488—493.
[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017. ZOO: Zeroth-order optimization-based
black-box attacks to deep neural networks without training substitute models. In Proceedings of the ACM Workshop
on Artificial Intelligence and Security. 15-26.
[10] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. 2019. ZO-AdaMM: Zeroth-order
adaptive momentum method for black-box optimization. In Proceedings of the Neural Information Processing Systems
(NIPS’19).
Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian Tramer, Atul Prakash, Tadayoshi
Kohno, and Dawn Song. 2018. Physical adversarial examples for object detectors. Retrieved from https://arxiv.org/
abs/1807.07769.

[11

—

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 59. Pub. date: August 2022.


https://research.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://arxiv.org/abs/1801.00554
https://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1801.01944
https://arxiv.org/abs/1807.07769

59:18 P.-H. Huang et al.

[12]

[13]
[14]
[15]
[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]

Santiago Fernandez, Alex Graves, and Jirgen Schmidhuber. 2007. An application of recurrent neural networks to dis-
criminative keyword spotting. In Proceedings of the Internet Corporation for Assigned Names and Numbers (ICANN’07).
220-229.

M. A. Ganaie, Minghui Hu, M. Tanveer, and P. N. Suganthan. 2021. Ensemble deep learning: A review. Retrieved from
https://arxiv.org/abs/2104.02395.

Yuan Gong, Boyang Li, Christian Poellabauer, and Yiyu Shi. 2019. Real-time adversarial attacks. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI'19). 4672-4680.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. 2014. Generative adversarial networks. Retrieved from https://arxiv.org/abs/1406.2661.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples.
Retrieved from https://arxiv.org/abs/1412.6572.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh,
Shubho Sengupta, Adam Coates, and Andrew Y. Ng. 2014. Deep speech: Scaling up end-to-end speech recognition.
Retrieved from https://arxiv.org/abs/1412.5567.

Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. 2018. Model-reuse attacks on deep learning systems.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’18). 349-363.

Jason Ku, Alex D. Pon, and Steven L. Waslander. 2019. Monocular 3D object detection leveraging accurate proposals
and shape reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19).
Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. 2014. A novel scheme for speaker recognition using a
phonetically-aware deep neural network. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP’14). 1695-1699.

Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al Dujaili, Minyi Hong, and Una-May O’Reilly.
2020. Min-max optimization without gradients: Convergence and applications to black-box evasion and poisoning
attacks. In Proceedings of the International Conference on Machine Learning (ICML’20).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards deep
learning models resistant to adversarial attacks. In Proceedings of the 6th International Conference on Learning Repre-
sentations (ICLR’18).

GPreetum Nakkiran, Raziel Alvarez, Rohit Prabhavalkar, and Carolina Parada. 2015. Compressing deep neural net-
works using a rank-constrained topology. In Proceedings of the International Speech Communication Association (IN-
TERSPEECH’15). 1473-1477.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. 2016. The
limitations of deep learning in adversarial settings. In Proceedings of the IEEE European Symposium on Security and
Privacy (EuroS&P’16). IEEE, 372-387.

Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, and Colin Raffel. 2019. Imperceptible, robust, and targeted
adversarial examples for automatic speech recognition. In Proceedings of the International Conference on Machine
Learning (ICML’19).

Krishan Rajaratnam, Kunal Shah, and Jugal Kalita. 2018. Isolated and ensemble audio preprocessing methods for de-
tecting adversarial examples against automatic speech recognition. In Proceedings of the Conference on Computational
Linguistics and Speech Processing (ROCLING’18).

Richard C. Rose and Douglas B. Paul. 1990. A hidden Markov model-based keyword recognition system. In Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP’90). 129-132.

Vinod Subramanian, Emmanouil Benetos, Ning Xu, SKoT McDonald, and Mark Sandler. 2019. Adversarial attacks in
sound event classification. Retrieved from https://arxiv.org/abs/1907.02477.

Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. 2018. Targeted adversarial examples for black box
audio systems. Retrieved from https://arxiv.org/abs/1805.07820.

C. Teacher, H. Kellett, and L. Focht. 1967. Experimental, limited vocabulary, speech recognizer. IEEE Trans. Audio
Electroacoust. 15 (1967), 127-130.

Peter Teufl, Udo Payer, and Guenter Lackner. 2010. From NLP (natural language processing) to MLP (machine language
processing). In Computer Network Security, Igor Kotenko and Victor Skormin (Eds.). Springer, Berlin, 256-269.
Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020. On adaptive attacks to adversarial
example defenses. Retrieved from https://arxiv.org/abs/2002.08347.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng.
2019. AutoZOOM: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’19).

George Tucker, Minhua Wu, Ming Sun, Sankaran Panchapagesan, Gengshen Fu, and Shiv Vitaladevuni. 2016. Model
compression applied to small-footprint keyword spotting. In Proceedings of the International Speech Communication
Association (INTERSPEECH’16). 1878—-1882.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 59. Pub. date: August 2022.


https://arxiv.org/abs/2104.02395
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1907.02477
https://arxiv.org/abs/1805.07820
https://arxiv.org/abs/2002.08347

Generation of Black-box Audio Adversarial Examples 59:19

[35] Jon Vadillo and Roberto Santana. 2019. Universal adversarial examples in speech command classification. Retrieved
from https://arxiv.org/abs/1911.10182.

[36] Jay Wilpon, Lawrence Rabiner, Chin-Hui Lee, and E. R. Goldman. 1990. Automatic recognition of keywords in uncon-
strained speech using hidden Markov models. IEEE Trans. Audio Electroacoust. 38 (1990), 1870-1878.

[37] Hiromu Yakura and Jun Sakuma. 2018. Robust audio adversarial example for a physical attack. Retrieved from https:
//arxiv.org/abs/1810.11793.

[38] Jiancheng Yang, Qiang Zhang, Rongyao Fang, Bingbing Ni, Jinxian Liu, and Qi Tian. 2019. Adversarial attack and
defense on point sets. Retrieved from https://arxiv.org/abs/1902.10899.

[39] Zhuolin Yang, Bo Li, Pin-Yu Chen, and Dawn Song. 2018. Toward mitigating audio adversarial perturbations. In Pro-
ceedings of the International Conference on Learning Representations (ICLR’18).

[40] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello edge: Keyword spotting on microcon-
trollers. Retrieved from https://arxiv.org/abs/1711.07128.

Received December 2020; revised July 2021; accepted August 2021

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 59. Pub. date: August 2022.


https://arxiv.org/abs/1911.10182
https://arxiv.org/abs/1810.11793
https://arxiv.org/abs/1902.10899
https://arxiv.org/abs/1711.07128

