
Cross-Layer EM Fault Injection Assessment
Framework

Hanqiu Wang1, Ruochen Dai1, Tuba Yavuz1, Xiaolong Guo2, Orlando Arias3, Dean Sullivan4,
Michael Lee1, Honggang Yu1, Siqi Dai1, Domenic Forte1, Shuo Wang1

1University of Florida
2Kansas State University

3University of Massachusetts Lowell
4University of New Hampshire

values sampled by latches. In digital systems, especially in
synchronous designs, data is typically sampled at the edge
of a clock cycle. The sampling fault model exploits this by
using EM/power pulses to cause transient faults at critical
moments when data is being sampled. This can lead to the
circuit erroneously sampling incorrect values, thus corrupting
the data or the state of the system. The timing fault model
suggests that undervolting caused by an EM/power pulse
will increase the propagation delay of cells, and thus cause
timing violations. Both fault models are verified by previous
work [3], [4]. However, previous work has been largely proof-
of-concept and, therefore, cannot be effectively scaled to
practical VLSI designs with many standard cells. To the best of
our knowledge, our work is the first to effectively and scalably
model the influence of EMFI on registers in a VLSI design.

Our proposed EM Fault Injection assessment framework
shown in Figure 1 specifically targets the sampling fault
model. With an accurately configured EM fault injection setup,
we utilize Simulation Program with Integrated Circuit Empha-
sis (SPICE) simulations to predict potential bitflip events in
targeted registers. In situations where we lack prior knowl-
edge of the fault injection setup, we recommend a simplified
workflow for calculating the probability of bitflipping. This
workflow includes calculating the probability of a bitflip under
a specific EMFI setup and the conditional probability of
multiple registers flipping simultaneously.

By integrating all these elements, our framework offers
a robust tool for designers, enabling them to quantitatively
evaluate and, thereby, enhance the security of their designs
against EMFI before they proceed to the silicon fabrication
stage. This proactive approach to security is essential in the
contemporary landscape of hardware design, where threats
are becoming more sophisticated and pervasive. Our main
contributions are summarized as follows:

• As the best of our knowledge, we are the first to propose
a framework that utilizes SPICE simulation and PDK
documents to evaluate if registers in digital designs are
susceptible to EM Fault Injection attacks.

• We then propose simplified register bitflip probability
equations that are based on the simulation results to
quantifiably estimate the likelihood of EMFI occuring.

Abstract—Threats posed by both power and Electromagnetic
(EM) fault injection (FI) are widely investigated in integrated
circuit (IC) security. These fault injection attacks exploit the
physical behavior of transistors to induce unintended behaviors
in circuits. In recent years, researchers have begun to model and
simulate both EM and power fault injection and their impacts.
However, most research fails to perform cross-domain analysis
from the transistor level to the gate level, then to the RT level,
and finally t o t he s ystem l evel. T herefore, w e p ropose a cross-
layer power and EMFI evaluation framework that helps to assess
the impact of EM/Power FI from the bottom up. Our framework
takes information from all layers in the IC design process into
consideration and uses SPICE simulation to emulate the fault
induced by EM/Power spikes. We further propose EMFI register
bitflip probability equations to quantify, characterize, and verify
our results. Finally, we prove the effectiveness of our approach
using a range of system-level benchmarks, and our register bitflip
probability matches closely with the SPICE simulation result.

Index Terms—Electromagnetic Fault Injection, SPICE simula-
tion, VLSI design, Fault Modeling

I. INTRODUCTION

Electromagnetic Fault Injection (EMFI) is a subset of
hardware or physical fault injection techniques, where an
electromagnetic pulse is intentionally directed at components
of a digital system to induce errors. This approach capitalizes
on the vulnerability of electronic circuits to electromagnetic
disturbances, a trait that attackers can exploit to circumvent
security measures. Over the years, considerable effort has been
dedicated to experimenting with physical fault injection on
various Application-Specific I ntegrated C ircuits (ASICs) and
microprocessors [2], [13], [14]. These experiments often adopt
a trial-and-error methodology without systematical modeling.
Countermeasures such as EM sensors and detectors are usually
implemented in the post-silicon phase [5], which is not ideal
as the cost of IC design will grow exponentially in different
stages [6], so mitigating EMFI is preferred in the earlier
pre-silicon stages. However, modeling and simulating EMFI
accurately has always been a significant challenge.

There have been a few works that have successfully modeled
and simulated EM fault injection. In the study by Dumont et
al. [4], EMFI was categorized into two distinct fault models:
the sampling fault model and the timing fault model. The
sampling fault model is based on the concept of altering the

20
25

 2
6t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Q
ua

lit
y

El
ec

tr
on

ic
 D

es
ig

n
(IS

Q
ED

) |
 9

79
-8

-3
31

5-
09

42
-2

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
Q

ED
65

16
0.

20
25

.1
10

14
42

4

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

Gatelvl Netlist

RTL code

Layout

Trimmed LayoutTrimmed Netlist Parasitic Xtract

Testbench

Probability Eq PWL Stimuli

EMFI setup

H-field

PDN Current

SPICE simulation

Fig. 1: Overview of our EMFI assessment framework. The framework takes the RTL code, gate-level netlist, the testbench,
and the layout from the ordinary digital IC design workflow as input. By extracting the parasitics of the trimmed layout and
using the waveforms derived from running the testbench as stimuli, we can accurately model the behavior of standard cells
during a EMFI event. Probability equations is also proposed to save the efforts to execute SPICE simulations.

• We verify the proposed simplified workflow and equa-
tions by performing 5,000 iterations of SPICE simulation
for each benchmark. We find that the mean error between
simulation and theoretical equation falls under 10% of the
average mean value.

The following sections are organized as follows: in Section
II, we introduce the prior work of physical fault injection and
guided fault injection research. In Section III, we elaborate
on the threat model for this framework. in Section IV, we
detail the workflow to model and simulate EM/power FI in
a SPICE simulation and propose a simplified workflow of
calculating bitflip probability for EMFI events. The results of
our framework on 5 different benchmarks are presented in
Section V. We further discuss how our proposed probability
equation could be used in Bayesian model-based system FI
evaluation and hardware fuzzing VI. Section VIII concludes
the paper.

II. RELATED WORK

Our work can be used to evaluate the potential of any
register to bitflip under a sampling fault. Two previous works
[12] and [4] inspire us to develop this workflow.

Dumont et al. first developed a method for simulating and
modeling EMFI [4] [3]. These two papers, inspired by previous
EM fault model studies [10], [11], categorize the EMFI into
sampling fault and timing fault models, and simulate and
explain how these faults happen. A tape-out is also done to
verify their proposed theory. However, their work does not
address the scalability issue. Large designs like most VLSI
designs are too large to be simulated by the method they
propose. Utilizing commercial VLSI EDA tools for scalable
physical fault injection is critical.

Pundir et al. introduced a workflow to simulate faults caused
by laser FI in [12]. They validate their framework by testing
on an AES design and successfully cause Differential Fault

Attacks. This work can handle large VLSI design, which in
some way addresses the scalability issue. Our work, on the
other hand, is trying to build a similar but more accurate
workflow featuring SPICE simulation to simulate fault caused
by EMFI.

In [17], a scalable system-level methodology is introduced
for estimating system reliability through low-level hardware
fault injection. This assessment technique offers precise cal-
culations by leveraging the masking probability inherent be-
tween hardware and software constituents. However, confining
the analysis solely to low-level technological effects proves
insufficient for a thorough exploration the impact of FI.

In the realm of identifying and mitigating fault attacks, [9]
established a security-aware Finite State Machine (FSM) en-
coding system that incorporates both protected states and
transitions. This proposed FSM architecture restricts access to
protected states exclusively for authorized states, forbidding
access from both unauthorized states and don’t-care states.
Furthermore, the model reduces the incidence of don’t-care
states, thereby creating an opportunity for the integration of an
additional FSM encoding system to augment system stability.

In addition, there are existing works that focus on utilizing
physical information to develop fault injection attacks on
embedded devices. For example, Jain et al. [7] introduced
a novel differential fault analysis attack methodology that
uses stuck-at fault patterns to determine the secret key of
a locked circuit. Luo et al. [8] proposed a remotely-guided
fault injection attack, known as Deepstrike, which applies
power glitching fault injections to disrupt the functionalities
of DNN accelerators deployed on the Cloud-FPGA platform.
Most recently, Zhong et al. [19] utilized a specific input pattern
that sensitizes a key bit to the primary output. Consequently,
their resulting fault attack is capable of breaking any locking
technique that relies on a stored secret key.

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

III. THREAT MODEL

In our research, we focus on developing a defense mecha-
nism against EMFI attacks. This effort culminates in a post-
layout, pre-silicon security-driven evaluation framework that
is specifically tailored for these kinds of threats and can be
integrated in the existing EDA toolkits. Our work is primarily
intended to assist designers in assessing the vulnerability of
their digital designs to EM and power fault injection attacks,
which are increasingly prevalent in the field of hardware secu-
rity. We assume that the designer has detailed knowledge of the
layout information, which provides insight into the physical
arrangement and connections of the circuit components. In
addition, a thorough familiarity with the testbench information
is required. The testbench information is crucial as it outlines
the environment or conditions under which the design is
tested and evaluated, thereby determining its resilience to the
aforementioned attacks. Lastly, gate-level netlist information is
also a vital component of our framework. The gate-level netlist
presents a detailed description of the electronic circuitry at the
logical gate level, offering an in-depth view of the circuit’s
functional and timing aspects.

By integrating all these elements, our framework can eval-
uate the susceptibility of registers bitflipping caused by EMFI
in a VLSI design.

IV. METHODOLOGY

In what follows, we introduce our workflow of using SPICE
simulations to model IC behavior under power and EMFI
attacks. We will introduce each step in sequence in this section.
We also include a demo analysis of the keyschedule module
in the SystemC-AES benchmark to better explain each step
in our EMFI assessment framework. The state[2:0] FSM in
the keyschedule model only takes a clock signal and reset
signal as input, and will repeat the state transition 0-1-2-3-4-0
loop after the circuit is powered up. Any state larger than 4
is an undefined state and Don’t Care Transitions (DCTs) may
occur once the FSM enters an undefined state, as shown in
Figure 2. Undefined states may serve as a hidden triggers for
Hardware Trojans that can never be reached through normal
functional test, such that DCTs can be exploited to bypass
normal authentication processes and directly enter sensitive
states that may cause confidential information leakage [1].

Fig. 2: Don’t Care Transition in vulnerable designs.

A. Layout and Netlist Trimming

The refined layout and gate-level netlist must encompass all
fan-in cells associated with the targeted registers, as shown in
Figure 3. This approach aligns with the methodology used in

[9], which involves retaining all fan-in key bits linked to an
output. For instance, consider the SystemC-AES benchmark.
Here, we focus on a FSM with a 3-bit state, designating
these three registers as our targets. The fan-ins for this setup
comprise 13 combinational logic gates and 3 registers, along
with 5 Clock Tree Synthesis (CTS) buffers. This process
of trimming can be efficiently executed using widely-used
commercial EDA tools, such as Synopsys Design Compiler.

Fig. 3: Gate-level schematic demonstrating the trimming strat-
egy.

Continuing with netlist trimming, we employ a consistent
strategy for the layout phase. This assumes that designers
have access to both the layout in GDS binary file format and
the design files used in automatic Place and Route software.
In practice, this involves deleting standard cells from the
layout that were eliminated during the netlist trimming phase.
Concurrently, we also remove all wiring connections related
to these trimmed cells. During post-trimming, the layout is
streamlined to include only the Power Distribution Network
(PDN) structure and those cells logically connected to the tar-
get registers, ensuring a focused and efficient design. Figures 4
and 5 show the layout before and after the trimming process.
The trimming process is to lower the computational load for
later parasitic extraction and SPICE simulation.

B. PDN Parasitics Extraction and EMFI Modeling

Upon completing the layout trimming process, the next
step in our methodology is to import the trimmed layout
into an analog layout design environment. This environment
is typically integrated with parasitic extraction tools, such
as Calibre PEX or StarRC, which are instrumental in accu-
rately modeling the parasitic effects present in the layout. To
facilitate straightforward voltage measurements, output ports
are added to the power supply of each cell in the layout.
Subsequently, the input power IO pads are designated as
input nodes for both VDD (positive supply voltage) and VSS
(ground), ensuring a comprehensive setup for accurate power
delivery and measurement. Once these preparatory steps are
completed, we engage the parasitic extraction tools to extract
the resistance (R) and capacitance (C) values of the layout.
This information is crucial in generating new SPICE models,
which will serve as inputs for subsequent stages of our process.
This approach allows us to model our designs with enhanced
accuracy, taking into account the real-world physical and
electrical characteristics that would impact the performance
in an actual silicon implementation.

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: SystemC AES benchmark layout before trimming
(without routing wires).

Fig. 5: SystemC AES benchmark layout after trimming (with-
out routing wires).

C. SPICE Simulation

After layout trimming and parasitic extraction of the layout,
we run the testbench of the designs to generate vcd waveform
files. Then we use an open source tool to transform the vcd
files into piecewise linear (PWL) files for each standard cell to
setup the SPICE simulation stimuli [15]. The toggling activi-
ties of the trimmed cells could also cause voltage fluctuations
that influence the behaviors of untrimmed cells. This is also
modeled by treating every trimmed cell as a current source
with the value being a pulse during these switches. The pulse
magnitude and frequency is derived from simulations of each
kind of standard cells switching between logic 0 and 1s.

We also need to generate stimuli on PDN based on different
FI setups before simulation. For power fault injection, we
simply change the voltage waveform at the input nodes and
through the RC network of the PDN, the supply voltage fluctu-
ation of every cell in the trimmed netlist can then be simulated
during the SPICE simulation. For EM fault modeling, we add a
current source for each extracted resistor of the PDN segments
that are affected. The current injected is equal to the induced
current by the EMFI. This current magnitude is a determined
fixed value in this work, but can be changed by using output
from EM simulating tools like Ansys HFSS. Finally, we run
the SPICE simulation and check the waveform of the target
register to see if any fault occurs.

D. Register Bitflip Probability

Before introducing the likelihood of targeting FI in a single
register, we present two observations upon which we base

our analysis. Based on these observations, we propose bitflip-
ping probability equations to simplify the EMFI assessment
framework. We favor these equations over SPICE simulations
due to the extensive time required for running numerous
simulations; it typically takes about one day to verify one
benchmark on our server equipped with 8 Intel i7 cores using
Cadence Virtuoso. Moreover, since IC designers may like
to check design robustness against EMFI before steps like
parasitic extraction and verification which are more costly in
the IC design lifecycle, we advocate for a simplified workflow
that incorporates the layout, netlist, PDN topology, and the
EMFI setup. The probability is determined by an unguided
EMFI event. We, therefore, propose a probability equation
to calculate the likelihood of a single register flip and a
conditional probability equation to assess the likelihood of
multiple simultaneous bit-flipping events.

Observation 1: When undervolting occurs on all cells. This
case is likely to happen when power FI happens. The pulse
injected at power pins will propagate through the whole PDN
network and almost every cell that is logically connected to
the target register will be influenced. If the latency caused by
the RC of the PDN network is small, then most cells will be
undervolted at the same time. Under this condition, the target
register will most likely not be flipped because when the fault
value arrives at the target register, the register itself is also
being undervolted and thus not functioning. Therefore, there is
a probability of a bitflipping event on target register only if the
RC network causes large delay. In Figure 6, Vfault is applied
on the source of power supply VSS and influences all cells
with a small RC delay, so that all three registers of state[2:0]
are undervolted and stop functioning meaning a bitflip never
occurs.

Fig. 6: Observation 1: when power FI happens, the fault event
is likely to influence most cells and if the delay caused by RC
network is small, it is hard to cause a bitflip.

Observation 2: When undervolting occurs on several
control signal cells. When undervolt events only affect several
PDN segments, usually during an EMFI attack where the probe
is near the IC surface, the RC network of the PDN has less
impact on inducing a fault. Rather, the physical location of the
injected currents will decide if the target register will flip. The
target register itself will likely be functioning normally and
sampling voltages. Undervolting on both control signal gates
and clock buffers will cause the target register to flip if the

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

undervolt propagates to the register inside the latch window.
In Figure 7, Vfault only influences the control signal cells
of state[2] and thus only state[2] is flipped while the other
two registers function properly, making the FSM enter the
undefined state 5. Control signal gates are defined by whether
the gate is toggled, meaning the value change could propagate
to the target register without being stopped at some logic gates
in the middle. Specifically, if X is an inverter, then the fan-in
signal is the control signal; if X is a OR(NOR included) gate,
then in its multiple fan-ins; if all fan-ins except Inputi are
logic 0, then Inputi is the control signal. If X is an AND
(NAND included) gate, if all fan-ins except Inputi are logic
1s, then Inputi is the control signal. If X is an XOR gate,
then all fan-ins are control signals. Moreover, control signal
of the control signal gates of X is the control signal of X .
Figure 8 is the showcase of how we extract control signals in
red by looking the internal states. Any flip in the red signals
will result in a change in the D port of the target register,
while blue signals will not.

Fig. 7: Observation 2: when EMFI happens, the fault event is
likely to influence fewer cells and easier to cause a bitflip.

1) Probability for inducing FI in a single register: It’s
important to note that in the case of Power FI, the latency
introduced by the RC network across the entire PDN must be
considered, which complicates simplification. Therefore, the
equations provided below in section IV-D1 and section IV-D2
are applicable only to EMFI scenarios.

Fig. 8: Determining which cells are control signal gates based
on current internal states, control signals are labelled red and
non-control signals are labelled blue

From the simulation results we observe in Observation 1
and 2 in Section IV-D, we can conclude that for a sampling
fault to happen, it must meet two conditions. First, the targeted
register itself should not be undervolted and, secondly, either
the control signal or clock buffer should be undervolted. Based
on these, we propose equation 1, 2, and 3 to simplify the

framework, saving the effort from running computationally
heavy SPICE simulations.

Pbitflip = (Pcts +ΣPcontrol −O2)(1− Pundervolt) (1)

Pcts = Pundervolt × (1− Platchwindow)× if(d ̸= q) (2)

Pcontrol = Pundervolt × Platch × if(Y ̸= 0) (3)

In Equation 1, Pcts denotes that the bitflip is caused by an
additional fault clock due to undervolting on the CTS buffer.
Pcontrol denotes that bitflipping is caused by undervolting on
one of the control signal gates. O2 denotes the condition that
two or more control signal gates are undervolted at the same
time, but we assume the probability of this kind is small
because it requires two undervolt events to occur at the same
time and can be omitted for simplicity for later calculation.
1 − Pundervolt denotes the probability of the target register
not being undervolted.

Equation 2 shows the probability of a bitflip caused by
the CTS buffer being undervolted. Pundervolt denotes that
the PDN segment of the CTS buffer must be undervolted.
1−Platchwindow denotes that this undervolt event must happen
outside the latch window, i.e. rising edge of the normal clock
cycle. If it happens within the latch time window, then the
faulted pulse will just cover the original rising clock edge
rather than form a new additional rising clock edge. if(d ̸= q)
denotes that when the additional rising clock edge arrives
at the target register, the sampling value d, or input, of the
register must be different from the latched value q, or output.
Otherwise, the latched value q will not flip but keep its original
value.

Equation 3 shows the probability of a bitflip caused by
control signal gates being undervolted. Again, Pundervolt

denotes that the PDN segment of one control signal gate
must be undervolted. Platch denotes that when the undervolt
event happens and the faulted value propogates to the targeted
register, this register must happen to be inside the latch
window, otherwise the faulted value would not be sampled.
if(Y ̸= 0) denotes that when the control signal gate is
undervolted, the original value of the control signal gate should
not be logic 0. In other words, the undervolt event can generate
a false logic 0 only when it is not logic 0.

2) Conditional Probability considering multiple bitflip
events: It is far from enough to only know the probability
of inducing a bitflip on a single register when evaluating
the EMFI susceptibility of a design. Usually, a secure state
comprises multiple secure registers. To expand the ability to
assess the design on a higher level, we need to introduce
conditional probability considering multiple bitflip events in
our framework.

To showcase how to calculate conditional probability, we
here assume two target registers X and Y. Fan-in cells to
register X are the CTS buffer CTSX and control signal gates
Xi. Fan-in cells to register Y are the CTS buffer CTSY

and control signal gates Yi. Based on what Section IV-D1

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

introduces, the probability equations for register X and Y are
shown in Equation 4 and 5, respectively.

P (X) = (Pcts(CTSX)+ΣPcontrol(Xi))(1−Pundervolt) (4)

P (Y) = (Pcts(CTSY)+ΣPcontrol(Yi))(1−Pundervolt) (5)

There are two conditions noteworthy: 1) that they do not
share any CTS buffer or control signal gates in common or in
the same PDN segment, and 2) that gates are shared or in the
same PDN segment. If they do not share any CTS buffer or
control signal gate in the same PDN segment, then:

P (XY) = P (X)P (Y) (6)

P (Y |X) = P (Y) (7)

If they share some control signal gates, or their control
signal gates happen to be placed in the same PDN segment,
then the equation is different. Let us assume control signal
gates X1 and Y1 are the shared gates, then the equation
changes to:

P (XY) = (P (X)− P (X1))(P (Y)− P (Y1)) + P (X1) (8)

where

P (X1) = Pundervolt × Platch × if(X1 ̸= 0) (9)

and

P (Y |X) =
(P (X)− P (X1))(P (Y)− P (Y1))

P (X)
+

P (X1)

P (X)
(10)

Equation 6 and 7 describe the probability of independent
events happening at the same time. If two registers have no
control logic in common, or have no control logic that resides
in the same PDN segment, then the single register bitflip
probabilities of these two or more registers are independent.
Equation 8, 9, and 10 describe the probability of dependent
single register bitflip events. They share common parts of
control logic and, thus, follow the conditional probability
equation that takes the shared factors into consideration [18].

V. EXPERIMENTAL RESULTS

We evaluate this framework on 5 benchmarks covering
DCTs and undefined states. For each benchmark, the vulner-
able undefined state can be reached by EM fault injection.
We calculate the bitflip probability based on the equation we
derive from SPICE simulations to evaluate if the equations
derived in Section IV-D are accurate.

A. Benchmark Selection and Targeted FSM

We evaluate the proposed framework across 5 distinct
benchmarks, each carefully chosen to explore influence of
EMFI on the handling of DCTs and undefined states in
FSMs. These benchmarks represent a diverse array of systems
and applications, offering a comprehensive assessment of our
framework’s versatility and robustness. These benchmarks are

examined in [1] to determine wheter DCT vulnerabilities are
able to access secure states. They include:

1) APB2SPI - This benchmark targets a state variable
named ’STATE’. It exhibits 3 DCTs at both the Register-
Transfer Level (RT-Level) and the Gate-Level, transi-
tioning from state [3] to [0,2].

2) RS232 UART - In this benchmark, the ’transmit’ module
houses the DCT FSM with a state variable named ’state’.
It provides insights into serial communication protocols.

3) UART - With ’recv-state’ as its state variable, this bench-
mark delves into aspects of Universal Asynchronous
Receiver-Transmitter (UART) systems.

4) IMA-ADPCM-ENC - Highlighting audio encoding, this
benchmark’s state variable is ’pcmSq’. It displays 2
DCTs at the RT-Level and 12 at the Gate-Level, transi-
tioning from states [6,7] to [0] and [0,5], respectively.

5) SystemC AES - With state in submodule ’keyschedule’
containing a DCT FSM, the state variable is ’state’ in
the module. This FSM have DCTs from state[5] to [0,4]
as inspected by Ruochen et al. [1]

Each benchmark encompasses netlists at both the RT-Level
and the Gate-Level, derived from YOSYS, a synthesis frame-
work. This selection of benchmarks, encompassing diverse
aspects like system control, encryption, and communication
protocols, provides a rigorous testing ground for evaluating
our framework’s efficacy in handling DCTs and undefined
states in FSMs. For our simulation work, we implement these
benchmarks using TSMC 65nm PDK.

B. SPICE Simulation and Probability Result

Fig. 9: PDN segments injected current when Probe close to
IC surface [4]

For SPICE simulation, we export the simulated voltage
waveform as CSV files and count the bitflip events using
Python scripts. These statistics are sorted by different FSM
state transitions. For the probability calculation, we hard-code
the equation in verilog in the testbench of these designs. By
comparing the probability and how many bitflip events happen
in the simulation, we are able to evaluate the effectiveness
of the proposed equation to simplify EMFI vulnerability
assessment.

For both SPICE simulation and probability calculation, we
assume similar EMFI modeling as used in the paper by

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

(a) Register state[2] of FSM in
SystemC AES

(b) Register STATE[1] of FSM in
APB2SPI

(c) Register state[2] of FSM in RS232 U-
XMIT verilog

(d) Register pcmSq[2] of FSM in IMA ADPCM-ENC (e) Register recvstate[2] of FSM in UART-1

Fig. 10: Bitflipping probability calculation results vs. SPICE simulation results for 5 benchmarks, mean error falls under 10%
of the mean value

Dumont et al. [4] in which the probe is very close to the
IC surface and only a few PDN segments are undervolted
as shown in Figure 9. Our benchmark layouts all have 6000
segments in total and we assume only 10 are influenced to a
level that undervolting can be wrongly sampled. Pundervolt is
1/600 then. The clock frequency is 100MHz, and the simulated
FI pulse width is 1ns, which makes Platchwindow 1/10. The
results are shown in Figures 10a, 10c, 10e, 10d, and 10b.
The mean error falls under 10% of the mean value for each
benchmark.

After we verify the effectiveness of the proposed bitflip
probability calculation equation for a single register, we then
conducted additional simulations in Cadence Virtuoso to verify
our conditional probability equation for multiple registers. We
target the state in keyexpand submodule in the SystemC-
AES benchmark and try to let the FSM directly enter state
5 from other states. To achieve this, multiple states may need
to be flipped at the same time. For example, if we want to
enter undefined state 5 from state 0, we will need to flip
both state[2] and state[0] at the same time during the normal
transition from 0 to 1. From the results shown in Figure 10a,
we already know the bitflip probability of state[2] in all 5
legal transitions. We, therefore, can start from this state and
get the probability of transitioning to state 5 during these
5 legal transitions. To verify the conditional probability, we
perform 50,000 rounds of SPICE simulations to achieve a
higher resolution to capture two or more registers flipping at
the same time. This number is chosen considering the trade-off
between resolution and computation time of SPICE simulation.
The result of this conditional probability versus simulation
is shown in Figure 11. The most vulnerable transition is

during the legal state transition from 3(011) to 4(100). To
enter undefined state 5(101), two registers state[2] and state[1]
need to flip simultaneously, which is the easiest to trigger
according to both simulation and our analysis. The mean error
of calculating two and more registers flipping at the same
time, which falls under 30% of the mean value, is larger than
single registers because the error would aggregate during the
multiplication of the probabilities of single register bitflips.

Fig. 11: The probability of the FSM entering undefined
state 5 from both simulation and calculation, system C AES
benchmark

C. Discussion on the mismatch between Equation and Simu-
lation

Two error sources cause the mismatch between the equation
and the simulation. One source is the O2 probability in
Equation 1 that denotes the condition that two or more control
signal gates in different PDN segments are undervolted at
the same time. Our equation omits this situation and adds
up the probability of each the control signal gates being

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

undervolted individually, so the result from the equation would
be slightly higher as the equation may take the O2 condition
into consideration multiple times.

The other source is to assume the probability of each PDN
segment being undervolted is identical. In SPICE simulation,
the PWL file-driven current sources help simulate the voltage
fluctuation caused by currents from other trimmed cells, but
in our analysis, the voltage fluctuation is omitted. Voltage
fluctuation will cause the cells to be flipped more easily
because the dropping VDD is closer to the threshold of having
an error and thus the circuit would be more sensitive to
fault injection attacks. Generally speaking, this source of error
causes the equation result to be lower than actual simulations.

VI. DISCUSSION

Component-based Bayesian Model for Cross-layer Eval-
uation. Vallero et al. [17] propose a scalable system-level
methodology designed to estimate system reliability by con-
ducting low-level hardware fault injection. This assessment
approach provides accurate estimations by utilizing the in-
herent masking probability that exists between hardware and
software components. Our work can be combined with this
work to extend the bottom layer from gate-level in [17] to
SPICE/transistor-level in this work.

Hardware Fuzzing. Hardware Fuzzing, proposed by Trippel
et al. [16], translates RTL hardware to a software model
and fuzzes the software directly. Hardware Fuzzing can reach
higher coverage of FSM states within less time, thus can be
used to replace and improve the golden standard–dynamic
hardware testing. The probability of register bitflips can be
integrated by specifying the probability of each register being
flipped. In this way, the original hardware fuzzing work can
consider physical FI and provide new improved test patterns.
We will explore the combination of the EMFI assessment
framework and Hardware fuzzing as our future work.

VII. ACKNOWLEDGEMENT

This research was partially supported by National Science
Foundation under Award Number 2019283 and 2028897, and
partially supported by Office of Naval Research under award
number N000142412048.

VIII. CONCLUSION

In this paper, we proposed a framework to evaluate the sus-
ceptibility of a digital design to physical fault injection attacks,
we further propose a simplified bitflipping probability calcu-
lating method as a metric for such evaluation. The proposed
framework is the first in the field, to our knowledge, to provide
a method that analyzes information cross-domain, from layout
to RTL level, to assess the security level of scalable digital
designs. The framework is evaluated on 5 different benchmarks
and the average difference between probability calculation
and SPICE simulation falls under 10%. Furthermore, we
discuss how a probability can be used in a larger physical FI
assessment framework that finally evaluates on the software
level by using the Bayesian model or by combining hardware
fuzzing technique to discover vulnerabilities at a higher level.

REFERENCES

[1] Ruochen Dai and Tuba Yavuz. A symbolic approach to detecting
hardware trojans triggered by don’t care transitions. ACM Transactions
on Design Automation of Electronic Systems, 28(2):1–31, 2022.

[2] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, Philippe Or-
satelli, Philippe Maurine, and Assia Tria. Injection of transient faults
using electromagnetic pulses practical results on a cryptographic system.
ACR Cryptology ePrint Archive (2012), 2012.

[3] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Electromag-
netic fault injection: How faults occur. In 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pages 9–16. IEEE,
2019.

[4] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Modeling
and simulating electromagnetic fault injection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 40(4):680–
693, 2020.

[5] David El-Baze, Jean-Baptiste Rigaud, and Philippe Maurine. An
embedded digital sensor against em and bb fault injection. In 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 78–86. IEEE, 2016.

[6] Xiaolong Guo, Raj Gautam Dutta, Yier Jin, Farimah Farahmandi, and
Prabhat Mishra. Pre-silicon security verification and validation: A formal
perspective. In Proceedings of the 52nd annual design automation
conference, pages 1–6, 2015.

[7] Ayush Jain, M Tanjidur Rahman, and Ujjwal Guin. Atpg-guided fault
injection attacks on logic locking. In 2020 IEEE Physical Assurance
and Inspection of Electronics (PAINE), pages 1–6. IEEE, 2020.

[8] Yukui Luo, Cheng Gongye, Yunsi Fei, and Xiaolin Xu. Deepstrike:
Remotely-guided fault injection attacks on dnn accelerator in cloud-
fpga. In 2021 58th ACM/IEEE Design Automation Conference (DAC),
pages 295–300. IEEE, 2021.

[9] Adib Nahiyan, Farimah Farahmandi, Prabhat Mishra, Domenic Forte,
and Mark Tehranipoor. Security-aware fsm design flow for identifying
and mitigating vulnerabilities to fault attacks. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
38(6):1003–1016, 2019.

[10] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. Em
injection: Fault model and locality. In 2015 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pages 3–13. IEEE,
2015.

[11] Sébastien Ordas, Ludovic Guillaume-Sage, Karim Tobich, J-M Dutertre,
and Philippe Maurine. Evidence of a larger em-induced fault model.
In Smart Card Research and Advanced Applications: 13th International
Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers 13, pages 245–259. Springer, 2015.

[12] Nitin Pundir, Henian Li, Lang Lin, Norman Chang, Farimah Farahmandi,
and Mark Tehranipoor. Security properties driven pre-silicon laser
fault injection assessment. In 2022 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 9–12. IEEE, 2022.

[13] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien
Bringer, and Laurent Sauvage. High precision fault injections on the
instruction cache of armv7-m architectures. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
62–67. IEEE, 2015.

[14] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks on
crt-based rsa: Concrete results. na, 2007.

[15] SteveMSong. Vcd file to pwl file script. https://github.com/SteveMSong/
python-scripts/blob/master/vcd-pwl.py.

[16] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly,
Dominic Rizzo, and Matthew Hicks. Fuzzing hardware like software.
In 31st USENIX Security Symposium (USENIX Security 22), pages
3237–3254, 2022.

[17] A. Vallero, A. Savino, G. Politano, S. Di Carlo, A. Chatzidimitriou,
S. Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal, A. Gon-
zalez, M. Kooli, A. Bosio, and G. Di Natale. Cross-layer system
reliability assessment framework for hardware faults. In 2016 IEEE
International Test Conference (ITC), pages 1–10, 2016.

[18] Wikipedia. Conditional probability, 2024.
[19] Yadi Zhong, Ayush Jain, M Tanjidur Rahman, Navid Asadizanjani,

Jiafeng Xie, and Ujjwal Guin. Afia: Atpg-guided fault injection attack
on secure logic locking. Journal of Electronic Testing, 38(5):527–546,
2022.

Authorized licensed use limited to: University of Florida. Downloaded on July 14,2025 at 18:37:54 UTC from IEEE Xplore. Restrictions apply.

