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Abstract—Deep Learning (DL)-based side-channel analysis
(SCA), as a new branch of SCA attacks, poses a significant
privacy and security threat to implementations of cryptographic
algorithms. Despite their impacts on hardware security, existing
DL-based SCA attacks have not fully leveraged the potential of DL
algorithms. Therefore, previously proposed DL-based SCA attacks
may not show the real capability to extract sensitive information
from target designs. In this paper, we propose a novel cross-device
SCA method, named Dual-Leak, that applies Deep Unsupervised
Active Learning to create a DL model for breaking cryptographic
implementations, even with countermeasures deployed. The exper-
imental results on both the local dataset and publicly available
dataset show that our Dual-Leak attack significantly outperforms
state-of-the-art works while no labeled traces are required from
victim devices (i.e., unsupervised learning). Countermeasures are
also discussed to assure hardware security against new attacks.

Index Terms—Side-channel Analysis, Deep Learning, Active
Learning

I. INTRODUCTION

Side-channel analysis (SCA) is a class of cryptographic

attack in which information from victim devices is extracted

by exploiting various unintentional physical side-channel leak-

ages such as power consumption [1], [2] and electromagnetic

(EM) emissions [3], [4]. Recent works demonstrate that SCA

against cryptographic devices achieve substantial progress even

in the presence of various countermeasures such as masking

and random delay. Among these new attacks, Deep Learning

(DL)-based SCA is becoming increasingly common and even

outperforms traditional statistical methodologies thanks to its

capacity for high-level feature representation and translation

invariance [5]. For instance, Hettwer et al. [6] introduced a side-

channel attack scheme, which shows that DL models can break

a cryptographic implementation running on a microcontroller.

In the wake of this, many following works have been proposed

to enhance their performance by designing specialized deep

neural networks (DNNs) [5], [7]–[9]. In addition to the model

itself, Kim et al. [10] demonstrated that adding artificial noise to

power or EM side-channel traces helps with the regularization

of neural networks. Wang et al. [11] introduced Conditional

Generative Adversarial Networks (CGANs) to augment the

side-channel traces for DL models. The authors in [12] further

applied the U-Net model to remove the noise from the measured

side-channel traces, hence making the attack more powerful.

Despite the research progress, DL-based SCA methods still

suffer from various limitations. For example, the performance

of DL models will rapidly degrade if the statistical distribu-

tion of SCA traces from profiling devices differs from those

captured from victim devices, a phenomenon occurring even

between two instances of the same architecture. To address

this challenge, Das et al. [13] developed the first cross-device

SCA methodology that used the combined power side-channel

leakages from multiple profiling devices to create DL models.

Zhang et al. [14] further proposed to apply the Fast Fourier

transform (FFT) to improve the performance of cross-device

SCA attacks further. More recently, Yu et al. [15] utilized the

meta-transfer learning technique to optimize the parameters

of DL models, thus reducing training costs and the required

amount of traces for a successful attack. However, these DL-

based SCA methods [12]–[15] still use supervised learning

techniques, which rely on the availability of huge amounts of

labeled data when creating these DL models. Labeling collected

data is often impractical as an attacker generally is not allowed

to access the label information from victim devices under real-

world conditions.

One way to ease this problem is coming up with intelligent

ways to partly reduce or eliminate the adversary’s dependence

on the label information from victim devices. For instance,

Picek et al. [16] explored the possibility of reducing such

labeling efforts by using a semi-supervised learning scheme.

Cao et al. [17] further proposed a new attack method, known

as AL-PA, which applies unsupervised learning as well as

adversarial learning models to create the profiled model for

cross-device attacks. Although the approach of [17] does not

require labeled attacking traces, the inherent drawback of

the adversarial learning model routinely makes the training

stage unstable and slow. As a result, the model’s parameters

(e.g., weights) have difficulty finding optimized values for the

training set. Additionally, existing works evaluate these DL-

based attacks only on the different copies of the devices with

the same circuit design. The effectiveness of the attack across

non-identical devices needs to be justified.
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Fig. 1: Illustration of the proposed unsupervised active learning framework for SCA attacks: (a) Pre-train an initial DL model

with the physical side-channel traces collected from profiling devices; (b) Use the AL algorithms to select the “informative” SCA

traces from the unlabeled active pool and generate the synthetic dataset for fine-tuning the DL model; (c) Deploy the fine-tuned

DL model on the attacking device to determine its secret key from the measured power or EM traces.

In this paper, we present a novel attack method that utilizes

unsupervised active learning to build the DL model for efficient

side-channel attacks without requiring any labeled attacking

traces. We call the new attack Dual-Leak. In particular, we

address the challenging problem with higher device discrepancy

and surprisingly find much less expensive analytical solutions

thanks to active learning algorithms. The key idea of our attack

method is that we exploit a novel combination of active learning

and unsupervised learning to create the deep learning model for

efficient side-channel attacks. Figure 1 visualizes the structure

of our proposed Dual-Leak. Specifically, the DL model is first

pre-trained on the labeled profiling dataset to obtain suitable

initial parameters. We then use active learning to choose the

most informative traces from the unlabeled active pool and

present them to be labeled by the pre-trained model (also

known as the oracle). The resulting trace-prediction pairs can

be viewed as the synthetic dataset to re-train the DL model

for optimizing its parameters (e.g., weights). Since the selected

traces lie approximately on the classification boundary, an

adversary can greatly improve the efficiency and effectiveness

when generating the synthetic dataset for fine-tuning the DL

model. It is worth noting that this proposed approach is

fundamentally different than other works such as [12] as we

select a subset of complete traces to use in training through

active learning, which is then used in transfer learning while

[12] uses a parameter regularization to guide the transfer

learning process. In addition to various separate AL algorithms,

we also explore and analyze their combined strategies. Our

results demonstrate that ensemble methods can be used for

increasing the diversity of the informative traces lying on the

classification boundary, thus making our DL based SCA attacks

more powerful than current state-of-the-art works. As a result,

an adversary can use our attack method to accurately recover

the secret information from the victim devices even in an

unsupervised learning scenario.

In summary, we make the following contributions:

• We propose the first method that integrates active learning

and unsupervised learning algorithms for cross-device

side-channel attacks. Most representative data from the

unlabeled input SCA traces will be automatically selected

to query an oracle DL model to obtain their labels and

build a synthetic dataset to train the model for SCA

attacking purposes.

• We assess a loss function designed to effectively identify

valuable features for training from both the source and

target domains concurrently, thus making the model con-

verge faster while reducing the probability of overfitting.

Moreover, this loss function is generic and can be easily

integrated into existing DL based SCA attacks to improve

their effectiveness.

• We conduct extensive experiments on both local datasets

and publicly available datasets to evaluate the performance

of our Dual-Leak SCA methodology. The experimental

results show that the proposed attack outperforms state-

of-the-art works while having no requirements on label

information from the victim devices.

II. BACKGROUND AND RELATED WORKS

A. Deep Neural Network

Deep Neural Networks (DNNs) are gaining popularity in

various security-critical tasks such as object recognition or au-

tonomous vehicles [18]–[20]. Typically, a DNN model mainly

contains three types of data layers: an input layer, an output

layer and hidden layers. The input layer often acts as a special

part of DNN models and usually varies with the dimensions

of the input data. Given an input, the corresponding classifi-

cation results, e.g., labels, confidence scores, etc. are routinely

printed by output layers. The remaining hidden layers such

as convolution, pooling and fully connected layers are often

utilized to extract the linear/non-linear features of input data

using a variety of dedicated computations. The convolutional

layer is usually followed by a pooling layer, which performs

average or max pooling operations to produce the sub-sampled

feature maps during the sliding window. The fully-connected

layers in a DNN model connect every neuron in one layer

to all activations in previous layers, as seen in a traditional

Multi-Layer Perceptron (MLP) network. The function of these

layers is to predict the probability distribution of the input data

for different labels by computing weighted summations, adding

certain biases as well as using non-linear activation functions

such as Tanh.

B. Profiled SCA

A profiled SCA poses a serious security and privacy threat to

embedded devices. Recently, researchers show that DL models

can improve the performance of traditional profiled methods

against cryptographic devices in embedded systems and thus

have become increasingly popular in SCA attacks [21]–[24].

Specifically, given physical side-channel traces Xi and the

corresponding labels Yi, an attacker can create the dataset
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Dt = {(Xi, Yi) | i = 1, 2, . . . , Nm} for training the DL model

where Nm denotes the size of the dataset. In a typical DL-based

profiled SCA, an attacker trains the model f(x) on the dataset

Dt and utilizes it to obtain the secret keys of victim devices by

feeding already known plaintexts Pi and the attacking traces

into the DL model. In particular, the DL models used in the

profiled SCA can filter and align the physical side-channel

traces automatically, relaxing the trace alignment requirement

in traditional SCA attacks.

C. Active Learning

Generally, Active Learning (AL) is applied to iteratively

selected informative data points to present them to be labeled by

an oracle, to maximize the performance of retrained deep neural

networks [25]–[33]. Existing works on active learning mainly

focus on how a user can quantify the importance of each point

in the large-scale active pool such as “useful” or “unusable”.

For example, Gal et al. [34] introduced an uncertainty-based

active algorithm that directly samples an informative subset of

a very large collection and query labels with the ones with

low confidence (i.e., those the model is least certain about).

Beluch et al. [35] further improved their effectiveness by using

an ensemble of neural networks to estimate the uncertainty of

unlabeled examples so that the proposed method can achieve a

good trade-off between a model’s accuracy and computation

costs. Ducoffe et al. [36] presented a novel active learning

method that utilizes margin-based sampling to choose particular

data points from the active pool. Since the resulting points lie

approximately on the classification boundary, a user can greatly

reduce labeling efforts while generating the synthetic dataset for

training the DL model.

Inspired by the success of AL algorithms in computer vision

and pattern recognition, this paper explores how an adver-

sary can transplant this novel technique to build DL models

adapted for efficient and practical SCA attacks. In particular,

we consider active learning as a core set selection process in

which a set of informative side-channel traces is selected from

unlabeled traces and then presented to an oracle for labeling.

Consequently, the model trained on the resulting input-output

pairs (i.e., synthetic dataset) is competitive over the remaining

traces. To the best of our knowledge, our work is the first

research effort to introduce active learning algorithms in the

SCA domain to improve the model’s performance for cross-

device attacks.

III. THREAT MODEL

While recent DL-based SCA attacks follow similar but not

the same threat models, for the proposed Dual-Leak attack,

we follow a more relaxed (and more realistic) setting. We

first assume that an adversary has no active control over

victim devices, but can passively observe and collect their

side-channel traces under encryption operations. Therefore, all

traces captured from the victim devices are not linked to the

precise intermediate variable, meaning that the adversary can

only collect unlabeled side-channel traces. While an adversary

can capture side-channel traces from the profiling devices with

known secret keys (i.e., labeled traces), in this study we further

assume a more realistic attack scenario where the adversary

may not have the exact same profiling device as the victim

device. The adversary only knows the secrecy related func-

tionality of the victim device so they will purchase a profiling

device with the same functionality (but not the same circuit

structure). For example, an adversary knows the victim device

runs the AES algorithm but does not know the underlying

circuit structure or the software program. The adversary can

then have an arbitrary AES design, either an AES accelerator or

a software program running on a microprocessor as the profiling

device. We believe that this threat model is more practical

than existing works as adversaries rarely have active control

over the victim device while passively observing side-channel

information such as power consumption or electromagnetic

emissions.

The main goal of the adversary is to apply those available

traces, i.e., a set of labeled profiling traces and a set of

unlabeled attacking traces to build a DL model for effectively

recovering the confidential information (e.g., encryption keys)

from the victim device. Different from current state-of-the-art

side-channel attacks, the proposed method particularly focuses

on the cross-architecture attack scenario where the profiling and

attacking devices are different in terms of circuit designs and/or

instruction set architectures (ISAs).

IV. METHODOLOGY

DNN models have gained increasing popularity in the side-

channel community due to their high-level feature representa-

tion and translation invariance. Despite their success in hard-

ware security, recent DL-based SCA attacks have not leveraged

the potential of DL algorithms, thus, do not show the capa-

bility to extract secret information from victim cryptographic

algorithms. In this paper, we, for the first time, propose to

utilize active learning to build DL models for cross-device

profiled SCA attacks. The overview of our Dual-Leak method is

demonstrated in Figure 1 and the attack process is also shown

in Algorithm 1. The proposed attack mainly consists of two

steps: DL model pre-training and DL model fine-tuning with

the synthetic dataset. Specifically, our attack starts with training

a DL model on the labeled profiling dataset to obtain suitable

initial parameters. Then, we use AL algorithms to select the

most informative traces from the unlabeled attacking traces

and present them to the pre-trained model (i.e., oracle) for

obtaining the pseudo labels. The resulting input-output pairs

will be viewed as the synthetic dataset to further fine-tune the

DL model. Finally, we deploy such a well-trained deep learning

model on the victim device to determine its confidential infor-

mation (e.g., secret keys) from the measured power or EM

traces. The key idea of our attack is that, by combining the

advantages of active learning and unsupervised learning, we can

compromise the victim cryptographic algorithms with lower

computation costs and fewer side-channel traces than current

state-of-the-art attacks.

A. Active Learning Sampling Strategy

In a typical cybersecurity oriented DL task, which poses

restrictions on the capabilities of adversaries, obtaining large
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amounts of labeled data (more precisely, individual instances) is

not always practical [29], [32]. Active learning offers a promis-

ing solution to this issue. By choosing a set of informative

samples from the unlabeled data and getting them labeled by

an oracle, active learning aims to minimize labeling effort while

simultaneously maximizing the performance of the DL model.

The concept of active learning originated from the fact that only

a few examples from the set of unlabeled data (also known as

the active pool) are essential for determining the DL model’s

decision surface. Based on that, active learning algorithms

have shown unprecedented success in many research areas in

computer vision and pattern recognition due to its ability to

mitigate the cost of creating a model by selecting the most

representative data to use in training [30]–[32]. In this paper,

we explore the application of these active learning methods

in cross-device SCA attacks and develop a novel method to

ensemble them, thus ensure that informative traces are labeled

such that the model learned over the resulting trace-prediction

pairs is competitive for the remaining traces. More precisely, we

formally define the problem of finding an informative trace x′

sampled by the multiclass active function Qmulticlass as follows:

Qmulticlass : argmin
x′∈Du

κ (x′, y, θ) (1)

where Du denotes the unlabeled dataset, κ denotes the output

confidence, y denotes the predicted labels (also known as

pseudo labels), θ denotes the parameters (e.g., weights) of DL

models. To select a set of x′, we evaluate four types of AL

strategies as well as their combination are considered in this

paper (Due to the vast majority of works on AL strategies, we

focus only on the most representative ones here.)

Random Sampling. For reference, we consider an extreme

scenario where an adversary randomly samples x from the

related domain and queries the oracle DL model to generate the

synthetic dataset. In this case, an adversary can use all available

SCA traces to build the synthetic dataset and obtain the

resulting DL model. Nevertheless, using such a massive amount

of traces to train the model often incurs high computation costs,

which makes it less efficient and even impractical as the amount

of traces that an adversary can record is usually very limited

in real-life scenarios.

Uncertainty Sampling. The authors in [37] introduce a novel

sampling method for active learning, which is quantified in

terms of predictive uncertainty. Mathematically, given the prob-

ability vectors Y predicted by a DL model, the corresponding

cross-entropy function Hi can be defined as follows:

Hi = −
∑

j

Yi,j logYi,j (2)

where the parameters i and j are label indexes. By maximizing

the entropy values Hi in Equation (2), we can select a subset

of “useful” samples with which the DL model is maximally

uncertain. These samples would be further used to build the

synthetic dataset for fine-tuning the DL model for efficient side-

channel attacks.

K-center Sampling. In this paper, we utilize the well-known

greedy k-center algorithm to choose the subset of informative

samples which are expected to yield the best prediction results

in the tested scenarios [38]. Specifically, as an active learning

algorithm, the K-center strategy first chooses the most distant

samples from existing centers and then presents them to an

oracle DL model for labeling:

arg max
(xi,yi)∈Di

min
(xj ,yj)∈Di−1

‖yi − f (xj)‖
2
2 (3)

where f(x) denotes the output of the DL model while given the

input trace x, such as power or EM. It is worth noting that we

iterate this sampling process until all the representative traces

are chosen from a very huge collection.

DFAL Sampling. DeepFool-based active learning (DFAL)

algorithm can be used to choose informative samples for label

assignment from a large-scale data set [36]. As mentioned in

[39], the DeepFool algorithm crafts adversarial examples by

adding particular noise to the original inputs. In the algorithm,

the authors generate the perturbation ηi by solving the follow-

ing box-constraint optimization problem:

argmin
η

‖η‖2

s.t. f (x) +∇f (x)
T
η = 0

(4)

Unlike existing works on adversarial attacks, this paper presents

an opposite perspective by exploring how these particular

perturbations (i.e., noises) can be applied to augment the dataset

for training the DL model. Since the generated examples are

close to the decision boundary, the DL model trained with

these particular examples often achieves higher classification

performance than the model trained with original examples, as

suggested in [40], [41].

Ensemble Strategies. Although existing active learning al-

gorithms have progressed, none of them guarantee that the

resulting traces are informative and diverse at the same time.

For example, the uncertainty strategy routinely tends to suffer

from the problem of the chosen traces being overly similar (i.e.,

less diversity), leading to poor classification performance while

adversaries consider such traces as an ideal training set. After

conducting a thorough analysis, we also observe that utilizing

solely the K-center sampling and DFAL sampling methods fails

to generate an efficient dataset for training a DL model (The

result is consistent with the finding in [31]). In this paper, we

implement a fusion of these AL algorithms to effectively ad-

dress this challenge, thereby ensuring both the informativeness

and diversity of the selected traces simultaneously. To conduct

a more comprehensive evaluation of AL algorithms for side-

channel attacks, we examine three distinct ensemble strategies

within this study: Uncertainty + K-center, Uncertainty + DFAL,

and DFAL + K-center. Take the DFAL + K-center strategy as

an example, the DFAL strategy is first used to choose an initial

subset of informative traces from the unlabeled active pool.

Then, we utilize the K-center strategy to eliminate further the

redundancy for increasing the diversity of valuable traces lying

on the classification boundary of the DL model. As a result, the

model trained on such traces is competitive over the remaining

traces.
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B. Deep Unsupervised Active Learning for SCA

Our Dual-Leak method utilizes an unsupervised active learn-

ing algorithm to effectively transfer knowledge from a label-

rich source domain to a fully unlabeled target domain. It is

worth noting that we use AES implementations as sample

cryptographic implementations in this paper while the proposed

attack applies to other cryptographic algorithms as well. Given

input traces x ∈ X, the corresponding output labels y ∈ Y

and the statistical data distribution D, we formally define the

objective function of DL models as follows:

argmin
θ

E(x,y)∼Du
[L(θ, x, y)] (5)

Where E denotes the population risk, θ and L denote network

parameters and the loss function, respectively. During the

training stage, the network’s parameters, such as weights or

biases, are iteratively optimized via gradient descent algorithms

such as the Stochastic Gradient Descent (SGD). However, the

model trained in this manner often fails to generalize well

across different domains (i.e., devices) due to its overfitting

problem. To tackle this challenge, this paper utilizes a novel

loss function proposed in [40] to train the deep learning model

for an efficient side-channel analysis. Mathematically, the loss

function of our DL model can be defined as follows:

argmin
θ

[

E(x,y)∼D

(

L(θ, x, y) + max
x′∈Du

L(θ, x′, y′)

)]

(6)

where L(θ, x, y) and L(θ, x′, y′) denotes the classification loss

calculated on the labeled profiling traces (i.e., source domain)

and the fully unlabeled attacking traces (i.e., target domain),

respectively. Moreover, the informative traces x′ can be selected

by utilizing various AL algorithms, as suggested in Equation

(1). We query the neural network model with these side-channel

traces x′ to obtain the corresponding pseudo-labels y′, which

will be treated as ground truth in our methodology. Further,

we then optimize the network’s parameters by minimizing the

loss function in Equation (6) using SGD algorithms. As a result,

our DL model can effectively distill valuable features from both

the source and target domains concurrently and thus converge

faster while avoiding the overfitting problem.

Step 1: In our attack, the deep learning model is first pre-

trained on the labeled profiling dataset X0 to obtain its initial

network parameters. In particular, such pre-trained parameters

will be viewed as a starting point for the neural network while

transferring general features from the source domain to the

target domain.

Step 2: We then build the active pool Du with a set of the

unlabelled side-channel information which are collected from

the target device. By using the AL algorithms as mentioned in

the previous sections, we select the most representative traces

from the unlabeled active pool and present to the pre-trained

model for labeling. The resulting input-output pairs can be

viewed as the synthetic dataset during the training stage.

Step 3: Finally, we re-train the DL model on the synthetic

dataset to optimize its parameters (e.g., weights). We also

iterate the training process by treating the fine-tuned model as

Algorithm 1 Dual-Leak: For the DL model Ft with hyper-

parameters (e.g., learning rate, kernel size, etc), a maximum

number of iterations n, AL strategies S , a labeled dataset

Dt(x), unlabeled active pool Du and the initial fine-tuning

dataset (X s
0 ,Y0).

Input: Ft, S , Dt(x)
Output: Student model Fs

Pre-trained a DL model Ft with dataset Dt(x)
Initialize i ← 0, X s

0 ← X0,Y0 ← Y0

while i < n do

Select the useful subset ∆X s
i in Du with strategies S

Query Ft and obtain labels ∆Yi for all traces in ∆X s
i

X s
i ← X s

i ∪∆X s
i ,Yi ← Yi ∪∆Yi

Fine-tune the DL model FS
i with (X s

i ,Yi)
Update the active pool Xu ← Du −∆X s

i

end while

the pre-trained model and re-generate the particular synthetic

subset with the AL algorithms for fine-tuning the DL model. In

the our attack, the number of iterations is set to a fixed value

of 3 as it can help us to achieve a good trade-off between the

model’s performance and the computation cost.

C. Evaluation Metric

In this paper, we utilize guessing entropy (GE) to assess

the effectiveness of our proposed Dual-Leak attack [7], [42].

GE determines how many traces an attacker needs to recover a

secret key from the target device while performing side-channel

attacks. Given the input vectors V = [v1, v2, ..., vm] in our

attacking stage, the predicted probability p̂ij for key candidates,

an attacker outputs a key guessing vector g = [g1, g2, ..., g|K|],
where |K| is the size of the key space and gi is the log-

likelihood principle that can be formally described as follows:

gi =
m
∑

i=1

log (p̂ij) (7)

Given the secret keys, the GE can be generated via calcu-

lating the average values of these keys over m testing traces.

When GE reaches 0, the true key is the most likely guess and

thus recovered.

V. EVALUATION

A. Experimental Setup

To evaluate the performance of our proposed Dual-Leak

attack method, we implement extensive experiments on the

SCA measurement platform as shown in Figure 2. Specifically,

an oscilloscope (Keysight MSOX4154A, 1.5GHz, 5GSa/s) is

connected to a computer to collect side-channel traces. The

computer sends random plaintext and a random key to the

SCA evaluation board running the 128-bit AES algorithm.

We use a popular AES software algorithm implementation

called tiny-AES-c1 to perform the encryption process on dif-

ferent microprocessors. We also apply a low noise Keysight

1https://github.com/kokke/tiny-AES-c
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N7020A power rail probe and a shunt resister to measure

the power consumption of the development board. A Langer

near field probe is utilized to collect the EM leakage from

the microprocessors under test in conjunction with PA303 low

noise amplifier. The power and EM traces are captured at the

same time, while the development board runs the encryption

algorithm. The development board also toggles specific General

Purpose I/O (GPIO) pins as the trigger signal right before the

encryption process. Each encryption iteration is repeated 32

times with the same key-text pair. In addition to this collection

setup, a customized 3D printer is deployed to automatically

localize the maximum leakage source while collecting EM

traces. In particular, the data acquisition is performed while

the microprocessor performing the sbox lookup operation on

the first byte of key and plaintext, sbox(key[0]⊕plaintext[0]),
to achieve the maximum sampling rate on the oscilloscope.

With the SCA measurement platform, we implement the

software version of AES algorithms on various microproces-

sors, including four different ARM development boards and

an ATXMEGA development board. More specifically, our test

boards include STM32F0, STM32F1, STM32F3, STM32F4

series microprocessors which allow us to study the side channel

attack difference among ARM Cortex-M0, Cortex-M3, Cortex-

M4 architecture respectively. We further run our data collection

on the ATXMEGA platform to show how well our DL models

work across designs with completely different microarchitec-

tures. For each target platform, we collect 100,000 traces

while the AES algorithm performs encryptions with randomly

generated plaintexts and keys.

Fig. 2: Overview of the SCA measurement platform.

We further explore whether the proposed attack can be

applied to reveal the AES encryption key used in the ASCAD

dataset. We determine the ASCAD2 dataset to be a good

general test as it represents a de-facto benchmark for DL based

SCA. For this datatset, all side-channel traces are collected

from the software AES algorithm running on a 8-bit AVR

microcontroller (ATmega8515). Masking countermeasures are

also implemented to further protect the key used in encryption

from side-channel attacks. In this experiment, we utilize 30,000

traces to train and 10,000 traces to test our DL models.

2https://github.com/ANSSI-FR/ASCAD

In this paper, we conduct all experiments on a data server,

which is equipped with Intel(R) Xeon(R) CPU E5-2623 v4

@ 2.60GHz, 128GB memory, Ubuntu 18.04 system and the

NVIDIA Tesla V100 GPU. We apply a simple but efficient

DL model for SCA which consists of two convolution layers,

two max-pooling layers, and four fully-connected layers. The

Rectified Linear Unit (ReLU) is also used as the activation

function for the fully-connected hidden layers (20 neurons) of

our DL model. During the evaluation, we set the learning rate

and the epoch of DL models to the fixed values of 1×e−5 and

50, respectively.

B. Device Variations

In this section, we use a popular metric, known as Pearson

Product-Moment Correlation Coefficient (PPMCC), to evaluate

the device variation across different circuit designs. Formally,

the PPMCC metric can be defined as follows:

Pearson(x, y) =

∑N
i=1 ((xi − x̄) (yi − ȳ))

√

∑N
i=1 (xi − x̄)

2
√

∑N
i=1 (yi − ȳ)

2
(8)

where N is the sample size, xi and yi are sample points indexed

with i. In particular, the x̄ and ȳ are average values over these

points:

x̄ =
1

n

n
∑

i=1

xi, ȳ =
1

n

n
∑

i=1

yi. (9)

During the experiments, we attack the victim devices, capture

their physical SCA measurements and evaluate their device

variations using the PPMCC metric. Specifically, we collect

20,000 power traces for each cryptographic device running the

AES algorithm to compute correlation coefficients. As shown

in Figure 3, we have the following findings. First, variations

for the devices with the same instruction set architectures

(i.e., identical devices) are small, which means an attacker

can easily recover the confidential information from the victim

device. Second, the correlation coefficients between devices

with different instruction set architectures (i.e., non-identical

devices) such as ATXMEGA and STM32Fx are quite large,

demonstrating that it is challenging to deploy side-channel

analysis in such a scenario. It is worth noting that the similar

(a) Device Variations (PPMCC) (b) Cross-Device Attacks (NtGE)

Fig. 3: Evaluation of device variations using PPMCC and SCA

attacks on target devices. NtGE represents the number of traces

required for GE to reach 0.

trend is also observed while we utilize the PPMCC metric to

evaluate device variations using the measured EM traces.
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(a) Original SCA attacks (b) Random (c) Uncertainty (d) K-center

(e) DFAL (f) Uncertainty + K-center (g) Uncertainty + DFAL (h) DFAL + K-center

Fig. 4: Evaluation of SCA attacks while using different AL strategies.

C. Case Study 1: Cross-Device Single-Domain Dual-Leak

Cross-Device Power Dual-Leak. During the evaluation, we

start with comparisons of cross-device single-domain attacks.

That is, the side-channel traces collected from the profiling

devices and the victim devices are all power traces from

different ISAs. In our implementations, we keep the DL model

architecture fixed, meaning that only one unified model is

trained on the profiling device. This model is then applied to

the victim device to recover its confidential information, such

as secret keys. In our attack, we first capture 15,000 labeled

traces from the profiling device for pre-training the DL model

to obtain suitable initial parameters. It is worth noting that

we iterate this pre-training process multiple times and make

sure the trained model is good enough to be transferred to

other devices. Then, we fine-tune the neural network model

on the synthetic dataset generated by querying the pre-trained

model (i.e., oracle) with 30,000 unlabeled traces selected by

various AL strategies from a very large collection (i.e., active

pool) of 100,000 unlabeled attacking traces. For reference, the

remaining 70,000 unlabeled attacking traces from the active

pool is also presented to the oracle for labeling. The resulting

trace-prediction pairs will be viewed as the reference dataset for

re-training the DL model and the corresponding testing results

are also shown in Figure 4 (a)). In our experiments, 10,000

traces are collected from the victim cryptographic algorithm

to validate the performance of our proposed attack. We also

evaluate how the effectiveness varies with different synthetic

dataset generation methods. Specifically, we consider seven

types of generation strategies: random, uncertainty, K-center,

DFAL, Uncertainty + K-center, Uncertainty + DFAL and DFAL

+ K-center. These strategies will be used for generating the

synthetic dataset to fine-tune the neural network model for side-

channel analysis. Figure 4 summarizes the influence of different

dataset generation strategies on the attack performance. From

this figure, we can see that:

• The model trained by the synthetic dataset always achieves

higher accuracy than the model trained by the reference

dataset (see Figure 4 (a)-(h)), meaning that only a few

traces from the unlabeled active pool are useful for de-

termining the separating surface (i.e., decision boundary)

of the DL model and all the rest of the other traces are

superfluous to the model. The DL model trained with

these useful traces would show remarkable results for

local datasets even in the case where the device variation

between the profiling device and the target device is quite

large.

• Further, we also observe that the synthetic dataset gen-

erated by various separate AL algorithms can help an

adversary optimize the parameters of DL models in a more

efficient way, leading to a lower guessing entropy while

attacking the target device of the same and different circuit

designs. For the sampling time, although the random

strategy obtains the traces using less time (i.e., 60s), the

resulting SCA attack performance is much worse than the

result achieved by using the other AL algorithms (i.e.,

4×), clearly indicating that the randomly sampled traces

are not informative.

• Among all the AL strategies, the ensemble of DFAL and

K-center strategies attempts to vary the contribution of

the traces that lie approximately on the decision boundary

on the DL model, which helps us increase the diversity

and informativeness of the useful traces at the same time.

This observation is consistent with the findings in [31].

Specifically, as shown in Figure 4 (b)-(h), the model

trained on the DFAL + K-center synthetic dataset can

reveal the secret keys from the victim device using as few

as 8 traces, which is much better than the results achieved

by other sampling strategies, such as random, uncertainty,

DFAL, and K-center. In some cases, although the ensemble

strategies Uncertainty + K-center and Uncertainty + DFAL
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outperform separate AL strategies such as random or

DFAL, none of them ensure that the selected traces are

informative and diverse simultaneously, leading to worse

attack effectiveness than the combined strategy of DFAL

+ K-center.

Cross-Device EM Dual-Leak. In this paper, we also imple-

ment cross-device EM based SCA attacks to explore whether

the proposed Dual-Leak method can be used in the low signal-

to-noise scenario. Specifically, we assume that the attacker can

only capture noisy EM traces from the profiling devices and

the victim devices. In the evaluation stage, we first pre-train the

neural network model on the profiling dataset which contains

15,000 labeled EM traces, and then fine-tune the model on

the synthetic dataset including 30,000 unlabeled EM traces.

We find that such a DL model is unable to recover the secret

keys from the victim device even using 2,000 EM traces. Then,

we enlarge the profiling data set and use 60,000 EM traces to

train the DL model. The extensive results demonstrate that our

well-trained DL model can converge towards guessing entropy

0 within 500 traces, which is much better than the results

achieved by the current state-of-the-art DL based SCA attacks.

These results further show that the proposed Dual-Leak attack

method can still break the victim devices even using low signal-

to-noise EM traces as long as enough signal information is

collected.

Comparison to Existing Attacks. To further evaluate the

efficacy of our proposed Dual-Leak attack method on the

device of the same and different circuit designs, we compare

with the existing state-of-the-art attack methods, including DL-

SCA [7], SSL-SCA [16], AL-PA [17], N2C-SCA [12], FL-

SCA [14] and MTL-SCA [15]. In our implementations, we

train the DL model on the profiling devices of different ARM

architectures and test on the attacking device equipped with the

ATXMEGA microprocessor. When compared, we reproduce

the setting of these previous works reported in their papers

and then modified them to make such attacks more suitable

for specific tasks. As discussed in the previous sections, the

combination of DFAL + K-center shows remarkable results for

all the considered SCA datasets and is also the only one that can

perform better than other AL strategies in all setups. Therefore,

in this section, we utilize such a combination strategy to choose

30,000 informative attacking traces from the unlabeled active

pool for creating the synthetic dataset to fine-tune the neural

network model. During the attacking phase, we then deploy

the well-trained model to perform SCA attacks on the target

device.

The comparison results are shown in Table I, from which we

observe that:

• Our Dual-Leak is able to reveal the confidential informa-

tion from the victim device with 16± 5 traces (i.e., mean

± standard deviation), which outperforms all the current

state-of-the-art works. The same trend also appears while

we utilize ATXMEGA as the profiling device to train

the model and then apply it to attack the target device

with different ARM architectures, e.g, STM32Fx. During

the evaluation, we also observe that the proposed attack

requires much less SCA traces from the profiling device

for pre-training (by 30%) when compared to existing

works. Although these works (e.g., [7], [16], [12], [14]

and [15]) use fewer attacking traces to fine-tune the neural

network model for side-channel attacks, in their threat

models they assume that adversaries have full access to

the label information from the target device, which can

not be easily obtained in the realistic attack. Moreover,

the authors in [12] and [14] require the target-specific

pre-processing for side-channel analysis on the victim

device, which incurs higher computation costs than our

proposed Dual-Leak attack. Similar to our method, Cao et

al. [17] applied the unlabeled attacking traces to adjust the

parameters of the pre-trained model. However, the inherent

drawback of the adversarial learning model used in their

attack usually makes the training stage unstable, resulting

in the model’s parameters hardly being optimized. This

would significantly degrade the attack’s effectiveness espe-

cially in the real-world scenario where the device variation

between the profiling device and the target device are

large.

These experimental results further demonstrate that, by combin-

ing the advantages of unsupervised learning and active learning,

we are able to create a successful DL model for SCA in a data-

efficient manner. In comparison to existing works, our Dual-

Leak could break victim devices with fewer side-channel traces

during the attacking stage and lower training costs during the

profiling stage, while no data pre-processing and labeled traces

are required from victim devices.

D. Case Study 2: Cross-Device Cross-Domain Dual-Leak

Local datasets. Similar to recent work in [15], we evaluate the

proposed Dual-Leak attack on local datasets in cross-domain

scenarios, i.e., side-channel traces from the profiling devices

and victim devices are from different physical domains. In

this scenario, we assume that the adversary is able to collect

labeled power side-channel traces from profiling devices. In

the meantime, the adversary can only capture EM traces, often

more noisy than power traces, from victim devices without

knowing any precise intermediate variable (i.e., unlabeled EM

traces).

During the experiments, we collect 20,000 labeled power

traces to build the dataset for pre-training the neural network

model. We also utilize the ensemble strategy of DFAL + K-

center to select 30,000 unlabeled EM traces from a very large

collection to generate the synthetic dataset for fine-tuning the

pre-trained model. The experimental results of local datasets are

demonstrated in Figure 5 (a)-(e). As shown in these figures,

the DL model fine-tuned by the synthetic dataset can break

AES implementations using fewer than 40 unlabeled EM traces.

Further, we also consider two variants of the proposed attacks:

Dual-Leak-V1 and Dual-Leak-V2, which use the loss functions

in Equation (5) and Equation (6) respectively to optimize the

model’s parameters (e.g., weights) during the training stage.

The experimental results are shown in Table II. We report the

performance of our attack method in two forms: the average
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TABLE I: A detailed performance comparison of our attack to current state-of-the-art works. NtGE represents the number of

traces required for GE to reach 0. We report the mean and standard deviation of NtGE for each method as a metric to evaluate its

attack performance. It is worth noting that we round all these values to their nearest integers in order to simplify the calculation.

FFT - Fast Fourier Transform.

Device Variation Method Profiling Labels Attacking Labels Preprocessing Main Property NtGE

Identical

Devices

DL-SCA [7] � � � � 325± 40

SSL-SCA [16] � � � Semi-Supervised Learning 271± 121

AL-PA [17] � � � Adversarial Learning 51± 10

Non-Identical

Devices

N2C-SCA [12] � � U-Net Inductive-Transfer Learning 73± 38

FL-SCA [14] � � FFT � 151± 53

MTL-SCA [15] � � � Meta-Transfer Learning 61± 12

Our Dual-Leak � � � Active Learning 16± 5

(a) STM32F0 (b) STM32F1 (c) STM32F3

(d) STM32F4 (e) ATXMEGA (f) ASCAD

Fig. 5: Evaluation of the proposed SCA attack methods on both local datasets and publicly available ASCAD dataset.

TABLE II: A comparison to current state-of-the-art cross-

device/cross-domain SCA. Dual-Leak-V1 and Dual-Leak-V2

are two variants of our attack. MTL - Meta-Transfer Learning,

UAL - Unsupervised Active Learning.

Method Pre-Train Fine-Tune Accuracy NtGE

MTL-SCA [15] � MTL 29.80% 350

Dual-Leak-V1 � UAL 56.49% 74

Dual-Leak-V2 � UAL 60.25% 39

testing accuracy of the DL model and the minimum values of

NtGE (Similar trends can also be found while we use the

mean as well as standard deviations of NtGE to evaluate the

effectiveness of our Dual-Leak). These forms of representation

would offer a comprehensive and informative analysis of the

attack performance, allowing for a clear understanding of the

effectiveness of our proposed Dual-Leak. From this table, we

can see that the DL model trained using the loss function in

Equation (6) can achieve better attack performance, which is

much better than the results achieved by the the model trained

using the loss function in Equation (5). With the attack Dual-

Leak-V2, an adversary can use as few as 39 traces to reveal

confidential information from the target device. The result

is also much better than the result (350 traces) achieved by

current state-of-the-art cross-device/cross-domain SCA in [15].

Further, these experimental results show that, with the novel

loss function as mentioned in Equation (6), the DL model can

effectively distill valuable features from both the source and
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target domains, thus reducing the probability of overfitting,

which is consistent with the results in [40]. Consequently, the

DL model trained with a mixture of side-channel traces can

generalize well across different domains.

ASCAD and local datasets. To further evaluate the effec-

tiveness of the proposed Dual-Leak attack in cross-domain

situations, we also train the DL model on the local dataset

and then test the model on the public ASCAD dataset. To

simulate a real-world situation where traces from different

datasets may be protected by some countermeasures, we also

perform masking operations on the ASCAD dataset. During the

profiling stage, we keep the architecture of DL models fixed

as we only train one model on both local and public datasets.

The DL model is first pre-trained with 20,000 labeled power

traces from the local dataset and then fine-tuned with 30,000

unlabeled EM traces from the ASCAD dataset. Note that these

EM traces are selected by the combined AL algorithm (i.e.,

DFAL + K-center) from the active pool. During the attacking

phase, we utilize the well-trained neural network model to

recover confidential information from the victim device using

the measured EM traces. The experimental results of our attack

method is shown in Figure 5 (f). With the help of the AL

algorithm, our attack can reveal confidential information from

victim devices using as few as 500 traces, which is much

better than the previous SCA attacks in [15], [16]. Even with

masking protection, our attack is still able to break the target

device using as few as 600 traces. Note that we evaluate the

state-of-the-art cross-device/cross-domain attack in [15] with

the same experimental setting and find that their DL models

cannot converge towards GE = 0 even using 2,000 traces.

These results demonstrate that, by combining the advantages of

active learning and unsupervised learning, our attack can extract

confidential information (e.g., secret keys) from the target

device with lower computation costs and fewer side-channel

traces, while having no requirements of label information and

specific data pre-processing methods.

VI. DISCUSSIONS AND POTENTIAL SOLUTIONS

In this paper, we propose a novel SCA attack method that

utilizes unsupervised active learning to build a DL model

to effectively break encryption running on a victim device.

Still, there are some limitations that we may address in the

future. For example, during the evaluation, we found that the

DNN model’s performance would degrade as the number of

unlabelled side-channel traces increases in some cases. We

believe this is because pseudo-labels returned by an oracle

are not accurate thus cannot be treated as the reference labels

during the training stage. We plan to address this challenge by

using other advanced DL training schemes or DL architectures

to build the profiled models. As a result, we can obtain

more accurate pseudo-labels while querying oracle models with

unlabelled side-channel traces. The DL models trained by the

resulting dataset (i.e., synthetic dataset) would achieve higher

performance while recovering the secret keys from victim

devices.

As shown in the experimental results, the proposed Dual-

Leak attack can effectively recover the confidential informa-

tion from the victim devices. As our attacks have posed

a serious threat to these devices, the corresponding defense

methodologies should be carefully considered in the future

to protect the AES implementations from DL based side-

channel attacks. One possible direction is to craft adversarial

examples against DL models. It is worth noting that DL models

are vulnerable to these examples generated by adding special

noises/perturbations to original examples. Since there are huge

amounts of adversarial example generation methods available

in the AI domain, we could borrow some ideas from these

existing works and further develop adversarial examples against

DL models in the SCA domain. The main challenge of this

direction is how we can generate special noises/perturbations

for original side-channel traces. One way is to design novel

optimization algorithms to search for adversarial noises for

these traces. Another possible method is to directly generate

the adversarial traces by developing particular hardware circuits

for cryptographic implementations. As a result, vendors or users

who want to keep their information confidential could deploy

such special circuits on the cryptographic implementations to

defense against DL-based SCA attacks.

VII. CONCLUSIONS

Deep Learning based side-channel analysis has posed a

serious privacy and security threat to cryptographic implemen-

tations. Using this method, an attacker can determine the secret

keys of target devices with the measured physical traces. In this

paper, we propose an effective and efficient SCA attack that

utilizes unsupervised active learning to build the DL model

for breaking cryptographic implementations. Our experimental

results demonstrate that the proposed attack method can infer

the secret key from the victim device with fewer side-channel

traces and lower computation costs when compared to current

state-of-the-art works. In the future, we will develop novel de-

fense mechanisms that can counter DL-based SCA attacks and

thus improve the robustness of cryptographic implementations.
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T. Güneysu, “Deep learning multi-channel fusion attack against side-
channel protected hardware,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC), 2020, pp. 1–6.

[23] L. Wu, G. Perin, and S. Picek, “The best of two worlds: Deep learning-
assisted template attack,” IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2022, pp. 413–437, 2021.

[24] G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli, “Ranking
loss: Maximizing the success rate in deep learning side-channel analysis,”
IACR Cryptol. ePrint Arch., vol. 2020, p. 872, 2020.

[25] B. Settles and M. Craven, “An analysis of active learning strategies for
sequence labeling tasks,” in Proceedings of the Conference on Empirical

Methods in Natural Language Processing, ser. EMNLP ’08, 2008, pp.
1070–1079.

[26] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples,” vol. abs/1605.07277, 2016.

[27] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317–331,
2018.

[28] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,”
in Advances in Neural Information Processing Systems 20, J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, Eds., 2008, pp. 1289–1296.

[29] D. Wang, Y. Li, L. Wang, and B. Gong, “Neural networks are more
productive teachers than human raters: Active mixup for data-efficient
knowledge distillation from a blackbox model,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1498–1507.

[30] W. Li, G. Dasarathy, K. Natesan Ramamurthy, and V. Berisha, “Finding
the homology of decision boundaries with active learning,” in Advances

in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 8355–8365. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/5f14615696649541a025d3d0f8e0447f-Paper.pdf

[31] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. K. Shevade, and V. Ganapathy,
“Activethief: Model extraction using active learning and unannotated
public data,” in AAAI Conference on Artificial Intelligence, 2020.

[32] C. Li, K. Mao, L. Liang, D. Ren, W. Zhang, Y. Yuan, and
G. Wang, “Unsupervised active learning via subspace learning,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 9, pp. 8332–8339, May 2021. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/17013

[33] K.-P. Ning, X. Zhao, Y. Li, and S.-J. Huang, “Active learning for open-set
annotation,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2022, pp. 41–49.
[34] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning

with image data,” in Proceedings of the 34th International Conference

on Machine Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p.
1183–1192.

[35] W. H. Beluch, T. Genewein, A. Nurnberger, and J. M. Kohler, “The
power of ensembles for active learning in image classification,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 9368–9377.

[36] M. Ducoffe and F. Precioso, “Adversarial active learning for deep
networks: a margin based approach,” CoRR, vol. abs/1802.09841, 2018.

[37] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in SIGIR ’94, B. W. Croft and C. J. van Rijsbergen, Eds.
London: Springer London, 1994, pp. 3–12.

[38] O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” in International Conference on Learning

Representations, 2018.
[39] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and

accurate method to fool deep neural networks,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2574–
2582.

[40] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le, “Adversarial
examples improve image recognition,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[41] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “Cloudleak:
Large-scale deep learning models stealing through adversarial examples.”
in NDSS, 2020.

[42] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the
analysis of side-channel key recovery attacks,” in Advances in Cryptology

- EUROCRYPT 2009, A. Joux, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 443–461.

154 IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)


