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ABSTRACT
As Autonomous Vehicles (AVs) mature into viable transportation
solutions, mitigating potential vehicle control security risks be-
comes increasingly important. Perception modules in AVs combine
multiple sensors to perceive the surrounding environment. As such,
they have been the focus of efforts to exploit the aforementioned
risks due to their critical role in controlling autonomous driving
technology. Despite extensive and thorough research into the vul-
nerability of camera-based sensors, vulnerabilities originating from
Lidar sensors and their corresponding deep learning models in AVs
remain comparatively untouched.

Being aware that small roadside objects can be occasionally in-
correctly identified as vehicles through on-board deep learning
models, we propose a novel adversarial attack inspired by this
phenomenon in both white-box and black-box scenarios. The ad-
versarial attacks proposed in this paper are launched against deep
learning models that perform object detection tasks through raw
3D points collected by a Lidar sensor in an autonomous driving sce-
nario. In comparison to existing works, our attack creates not only
adversarial point clouds in simulated environments, but also robust
adversarial objects that can cause behavioral reactions in state of
the art autonomous driving systems. Defense methods are then
proposed and evaluated against this type of adversarial objects.

KEYWORDS
Deep learning; security; sensors; autonomous driving
ACM Reference Format:
Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max Panoff, Tsung-Yi Ho,
and Yier Jin. 2021. Robust Roadside Physical Adversarial Attack Against
Deep Learning in Lidar Perception Modules. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’21), June 7–11, 2021, Virtual Event, Hong Kong. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3433210.3453106

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3453106

1 INTRODUCTION
Security concerns on the impact of autonomous driving techniques
on road safety have risen along with the rapid development of these
techniques. The perception module is a fundamental component in
Autonomous Vehicle (AV) systems. It interprets the surrounding
environment by combining the capabilities of multiple sensors. The
accuracy and efficiency has been significantly improved due to
recent advancements in deep learning. Camera sensors and Lidar
sensors are most pivotal units in perception systems.

Deep learning models deployed on AVs can help process high-
resolution videos captured by the camera for object recognition
and tracking in real time. Despite the great success, the information
provided by camera-based sensors is still limited to two dimensional
(2D) pixels, resulting only rough estimates for the exact distance
and location of objects in the environment. To compensate for the
limitations of camera-based sensors, Lidar sensors are often applied
to provide more accurate three dimensional (3D) information for AV
systems. The captured 3D information is presented as coordinates
of point cloud data, obtained through firing infra-red (IR) lasers
from a Lidar sensor and timing how long they take to return to a
corresponding IR detector. Deep learning techniques [16, 33, 35]
also help analyze 3D point data captured by Lidar sensors for more
comprehensive understanding of the AV’s physical environment.

Though deep learning is recognized as a promising solution to
plenty of tasks, including perception in an AV system, it remains
vulnerable to adversarial examples. Adversarial examples are mali-
ciously crafted inputs and recent works have shown that they can
mislead deep learning models [3, 10, 19, 38]. For the camera-based
perception based on popular deep learning vision techniques such
as Yolo [29] and fast-RCNN [30], many sensor-level attacks leverage
this vulnerability benefiting from the abundant research on adver-
sarial examples in computer vision areas [38]. For example, the
authors in [19] show that attaching specially designed stickers to
traffic signs can cause deep learning models responsible for traffic
sign recognition to incorrectly perceive signs. The authors in [10]
present a Trojan attack on neural networks trained for AV percep-
tion, indicating that adversarial examples can be applied physically
against camera sensors with deep learning models deployed in AVs.

Regarding Lidar sensors, however, sensor-level attacks based on
the phenomena of adversarial examples is not as straightforward as
the one in camera sensors, resulting less discussion on this potential

Session 4A: ML and Security (III)  ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

349

https://doi.org/10.1145/3433210.3453106
https://doi.org/10.1145/3433210.3453106
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3433210.3453106&domain=pdf&date_stamp=2021-06-04


threat. Existing spoofing or saturating attacks [3, 36] provide the
possibility to alter point cloud data captured by Lidar in real road
scenarios, yet their effects on the final results of deep learning
models are either limited or still not well understood [3]; adversarial
attack algorithms [20, 44] have been proposed targeting 3D deep
learning models such as PointNets [27, 28] by adding or altering
points, but they concentrate only on the point cloud data and may
not be implemented in real-world environment.

Recent works [40] start to design physically-realizable attack on
the deep learning models in 3D domain, yet their schemes are only
verified by desktop 3D scanners, not Lidar sensors on AVs.While the
authors in [3] manage to implement the first successful Lidar based
perception attack on AVs with physical spoofing restraints, their
scheme is only verified in simulation environments. Considering
that the laser-spoofing based attack would require using an attack
device to track the small target that a Lidar presents on a victim
vehicle, which is often moving at high speed, it would be difficult
to reliably launch such attacks. The spoofing based attack against
Lidar based perception is further extended in [37], where black-box
spoofing attacks are launched towards various popular 3D data
analysis deep learning models. Despite their success, the authors
admit they have yet to evaluate the performance on real AVs. An
attack in real road environments has recently emerged [4], but the
attack lacks details and sufficient experimental results (neither the
code nor the algorithm details are released so far). Others have
also attempted to launch adversarial attacks against deep learning
models under real Lidar sensors [41], but they again lack real road
test results.

To address the limitations of previous attack schemes that fail to
simultaneously consider adversarial attacks against deep learning
models and Lidar sensors in practical conditions, in this work we
propose adversarial attacks against the popular combination of Li-
dar sensors and deep learning models deployed on AVs. Comparing
to the existing attack methods that pay less attention to realize
attacks in real road driving scenarios, our attacks are launched with
robust physical adversarial objects placed at roadside targeting
Lidar sensors with deep learning models that perform 3D object de-
tection tasks in AVs. In the vision of Lidar sensors and deep learning
models these small roadside adversarial objects will be recognized
as vehicles that invade the lane and cause negative effects including
traffic jams, emergency stops or irregular lane changes.

Our attacks include bothwhite-box attacks and black-box attacks.
In the white-box attack we assume the adversary has the access to
the target deep learning model. In more realistic black-box attacks
where deep learning models behind the Lidar may not be accessed
by the adversary, we further apply genetic-evolving algorithm to
generate adversarial objects. To investigate the potential impact
of adversarial objects on traffic, we utilize Lgsvl simulator [31]
with Baidu Apollo autonomous driving platform [2] to simulate AV
behavior when encountering our roadside adversarial objects. The
simulation results illustrate that normal diving behavior controlled
by Apollo system will turn into abnormal actions including sudden
stop or irregular lane changing when facing the adversarial objects
proposed in this paper.

Overall, we design a practical roadside attack in a real world
scenario and demonstrate that placing a small roadside adversarial

object will cause significant impact on deep learning model with-
out interfering the normal driving behaviors. We also consider the
existing defensive methods designed specifically to prevent adver-
sarial 3D point clouds. We further show that our attack can bypass
these defense mechanisms with high success rates. Based on our
experiments and the understanding of existing defensive mecha-
nisms, we further propose an effective detection method against
physical adversarial object by utilizing the physical characteristics
of current Lidar sensors in the real road environment.

Overall we make the following contributions in this paper.
• We propose a novel attack to generate adversarial 3D point
clouds against deep learning models with high success rates.

• Our attack generates both robust adversarial points in the
digital domain and printable adversarial objects that can be
implemented in real road environments.

• We show that our attack can bypass existing defenses against
adversarial 3D point clouds with high success rates. On
the base of that we illustrate possible defense mechanisms
that can effectively detect similar physical adversary objects
against deep learning models relying on Lidar sensors.

• We also evaluate the impact of our physical roadside adver-
sarial objects on commercial autonomous driving systems.
We find that our roadside objects can force an autonomous
driving system to perform abnormal decisions including sud-
den braking and irregular lane changing.

2 BACKGROUND
In this section we will discuss deep learning techniques applied
in AV systems and existing adversarial attacks against these deep
learning models.

2.1 Deep Learning Based Perception in AV
Systems

Camera Based Perception. The progress of deep learning in com-
puter vision for object detection and instance segmentation mo-
tivates applications of these deep learning models to perception
modules in AV systems. These camera based solutions use images
as inputs to extract the locations, types and orientations of objects
on the road [43]. However, these methods suffer from the inherent
difficulties of estimating depth from images and as a result per-
form poorly in 3D localization. They are also the targets of various
deliberate real world adversarial attacks [19].
DeepLearning onPointCloudData.Beyond 2D bounding boxes
or pixel masks, 3D understanding of the environment provides more
robust information to an AV. With the popularity of 3D sensors
increasing, larger amounts of 3D data can be captured and pro-
cessed to provide precise depth information to mobile devices and
autonomous vehicles. Point clouds, a popular data format that con-
tains 3D coordinates information of points sampled from the surface
of physical or virtual objects, are widely applied in 3D vision areas
such as industrial modeling, surveying, and autonomous driving.
Unlike images with ordered pixels, point clouds are unordered,
making analysis difficult via popular deep learning techniques. To
address this difficulty, Many methods have been proposed to design
deep learning models that take point cloud data as inputs and out-
put classification or object detection results. These methods can be

Session 4A: ML and Security (III)  ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

350



generally divided into three classes: voxel-based methods, bird-eye
view methods, and PointNet-based methods.

VoxelNet [49] divides the point cloud into equally-spaced 3D
voxels, allowing for ordered analysis. Then 3D Convolutional Neu-
ral Networks (CNNs) are applied for 3D bounding box prediction,
after which a 2D convolutional detection layer is applied in the
final stage. Many recent works [17, 42, 45] adopt this voxel-based
architecture and achieve state-of-the-art performance. PointPillar
[16], is another example of a voxel-based method. It utilizes an
encoder to convert features learned from voxelized point clouds
into sparse pseudo images. The final predictions are given by ap-
plying 2D CNNs and a SSD-based [21] detection network on the
pseudo images. We adopt PointPillar [16] as a target model in the
black-box setting as they are supported with strong baseline results
and adopted in Baidu Apollo 6.0 system [2].

Using Deep Neural Networks (DNN) to process 2D images is a
mature technique and as such, researchers transform Lidar point
clouds into ordered 2D structures for 3D object detection in AV
systems. Thesemethods [8, 33, 46] convert the point cloud to a bird’s
eye view representation for efficiency and exploits 2D convolutions.
We choose PV-RCNN [33] as one target model in the black-box
setting since it achieves high performance in the Kitti bird’s eye
view benchmark.

Bird-eye and voxel based methods apply deep learning models
to analyze point cloud data by decreasing computation cost and
improving performance with sparse data. However, these methods
cannot directly process raw point cloud data and instead rely on
transformation techniques to convert the raw point cloud data into
a form that can be easily processed. Though easy to operate, the
performance of these schemes is limited by information loss. In
comparison, PointNet [27] and PointNet++ [28] apply max-pooling
and transformations to reduce the unordered and dimensionally
flexible input data to fixed-length global feature vectors. By doing
so, they enable end-to-end neural network learning architectures
on raw point cloud data. PointNet demonstrates its robustness
by introducing the concept of critical points and upper bounds.
PointNets are widely adopted in different applications such as 3D
object detection [26, 35] as backbone feature generation networks.
In this paper, we start our attack against a well-trained Pointnet-
based network, PointRCNN [35]. We choose it as the target model
in the white-box setting because it achieves high performance in
3D detection test board of KITTI by using only point clouds as the
input, and it leads the trend of taking only raw point cloud data as
inputs without further pre-processing.

2.2 Adversarial Examples
Szegedy first discovered adversarial examples [38] in which slight
but specially chosen alterations, called perturbations, are added to
images. With the perturbations, deep learning models may incor-
rectly classify 2D image inputs despite the fact that human eyes
could not detect the changes. Since then, further works [5, 12, 22, 24]
have created increasingly complex and effective adversarial exam-
ples to models across many domains.

In response to these discoveries, research has identified methods
to defend against adversarial examples. Tramer et al. propose ad-
versarial training [39] where a resistant model is created through

Table 1: Comparisons of 3D Adversarial Attacks on Lidar
Sensors.

Approach Practicality
in road

Defense
discussion

DNN
related

[20] ✗ ✗ ✗

[41] unverified ✓ ✗

[3] ✗ ✓ ✓

[4] ✓ ✗ ✓

[37] ✗ ✓ ✓

Ours ✓ ✓ ✓

the addition of known adversarial examples to a training dataset.
Defensive distillation [25] smooths adversarial gradients in a model
through retraining. This distills the knowledge that a model gains
through the first round of training while forcing the adversarial out-
put vectors of the DNN model to converge at a large number. This
makes it more difficult for an adversary to trick a model. Guo [13]
defends against potentially adversarial inputs with pre-processing
methods, such as image compression, transformations, and flips.
However, the authors in [5] find possible methods to bypass these
defense mechanisms. A further proposed defense to adversarial
examples lies in enhancing the robustness of deep learning models.
Certifiably robust classifiers whose predictions can be verified to
be constant within a given neighborhood may be resistant to ad-
versarial examples [9, 18]. A large amount of work remains to be
done to make such a defense practical, however.

2.3 Lgsvl Simulator and Apollo Platform
Lgsvl simulator [31] is a production-grade Autonomous Driving
(AD) simulator based on the Unity 3d engine. It can perform envi-
ronmental, sensor, and vehicle dynamics and control simulation of
a vehicle. Thus, it allow users to customize environments and vehi-
cles for testing and validation. Lgsvl simulator can interface with
the Baidu Apollo platform [2], which is an open-source AV system
that has over 100 partners and has reached multiple mass produc-
tion agreements. The simulated vehicle in Lgsvl can be controlled
by the Apollo in the virtual environment with perception, predic-
tion, routing and control module. The newest Apollo 6.0 version
update its Lidar based perception module based on the PointPillar
technique [16].

2.4 Existing Attacks on Lidar Based Perception
Few attacks targeting perception module of AV system consider
Lidar sensors and the deep learning module supporting them simul-
taneously. For the attack against deep learning models, adversarial
attacks on 3D point cloud data are proposed in [20, 44]. They demon-
strate the feasibility to alter point cloud data for fooling the target
deep learning model, but fail to implement these attacks in real
world.

Many sensor-level attacks focus on injecting or blocking the
point cloud data captured by the Lidar through methods such as
laser spoofing or saturation [3, 36]. These types of attacks could
trick the victim sensor to provide seemingly legitimate, but actually
erroneous, data. However, these attacks lack extension to the deep
learning models that give the final results of the detection behind
the Lidar sensors, causing the phenomena that the erroneous input
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fail to achieve the expected effect on deep learning models [3]. Re-
searchers also explore the adversarial attack against deep learning
models in Lidar scenarios [41], yet their work still lacks convinc-
ing real road tests. The authors in [3] perform the first study to
explore the security of Lidar-based perception in AV settings, but
their scheme is only verified in a simulation environment. Their
laser-spoofing based attack requires dynamically aiming an attack
device at the Lidar on a victim car with high precision, resulting the
high difficulty to be piratically launched in real road environment.
Though the authors in [37] extend this work into black-box setting,
the same issue remains that there lacks practicality in real road
environment. The authors in [4] start to launch attacks in real road
environment, but their attack lack details, e.g., code or algorithms,
and the experimental results are insufficient.

Considering the limitations of current studies of adversarial at-
tacks against Lidar sensors and their corresponding deep learning
models in AVs, we propose a novel method that can be launched
in a real road environment. We also evaluate the effect of existing
defense mechanisms. Based on the evaluation we propose new algo-
rithms to defend against our proposed attack. The major differences
between our work and previous studies are shown in Table 1.

3 METHODOLOGY
3.1 Threat Model
Our work assumes an adversary who wishes to attack a deep learn-
ing based object detection module deployed on the AV system
through its Lidar sensors. By manipulating small roadside objects
in the physical world around the target vehicles, the adversary
seeks to impede the normal driving behavior of a victim AV. The
adversary does this through crafting and placing objects that cre-
ate illusory vehicles in the victim vehicle’s lane. The adversary
launches the attacks in both white-box scenarios and black-box
scenarios. In the white-box setting the adversary launches the at-
tack against a PointRCNN [35] model trained for object recognition
tasks. In the black-box setting the adversary targets PointPillar
[16] and PV-RCNN [33] models with only input-output pairs. The
attack is conducted by designing and manufacturing certain ob-
jects that will be detected by Lidar sensors. The point cloud data
generated by the scan results is intended to alter the results of
the target deep learning models to achieve the adversary’s goals.
The adversary generates adversarial watertight meshes and uses
a simulated Lidar to confirm that the received point clouds retain
their adversarial properties. The attack is then launched in real road
environment by placing the 3D printed adversarial object roadside
without interfering with human driving behaviors.

3.2 White-box Attacks
3.2.1 Introduction to PointRCNN. Before we start the attacks in
white-box scenarios against PointRCNN model, we need to under-
stand how PointRCNN works. PointRCNN is a novel two-stage 3D
object detection framework, which directly operates on 3D point
clouds and achieves robust and accurate 3D detection performance.
The proposed framework consists of two stages, Region Proposal
Network (RPN) and Region-based CNN (RCNN). The RPN stage
aims at generating 3D bounding box proposals in a bottom-up

scheme. The RPN backbone network takes raw point cloud as in-
puts and outputs classification results and regression locations of
each single point. Through a sigmoid layer, the classifications are
transformed to probabilities, which determines whether a single
point belongs to a certain object. By utilizing 3D bounding boxes to
generate ground-truth segmentationmasks, the first stage segments
foreground points and generates a number of bounding box pro-
posals from the segmented points simultaneously. Such a strategy
avoids using a large number of 3D anchor boxes in the whole 3D
space as used in previous methods [15, 49] to reduce computation.
The following proposal layer takes the RPN outputs as inputs and
outputs bounding box proposals as region of interests (ROIs) after
filtering out similar or duplicated bounding boxes. In the RCNN
stage, after the 3D proposals are generated, a point cloud region
pooling operation is used on the learned point representations from
RPN stage. Unlike existing 3D methods that directly estimate global
box coordinates, these pooled 3D points are transformed to canoni-
cal coordinates and combined with pooled point features and the
segmentation mask from stage 1 to refine relative coordinates. This
strategy fully utilizes all information provided by the robust stage
1 segmentation and proposal sub-network. The final output of the
RCNN stage contains both the classification and the regression
location of each bounding box proposal. After post-processing (e.g.
non-maximum suppression) the final results are obtained.

3.2.2 Targeting Deep Object Detection Models. We start our attack
process by determining the possible distribution of point clouds
that can lead the target model to desired results. Given a point cloud
𝑥 ∈ R𝑛×3, we add perturbation 𝛿 ∈ R𝑛×3 to mislead the model into
incorrect predictions. Here the perturbation 𝛿 are treated as the
vectors that describe the direction and magnitude of shifted points.
In this work, we focus on appearing attacks, which aim to deceive
the perception module into detecting the presence of target objects,
i.e., a car in our case, that are not present in the given scenario.
To achieve an appearing attack, both the RPN network and RCNN
network should be considered simultaneously. Because the final
predictions are based on the ROIs, we have to consider both the
objectiveness scores from the RPN network and the final detection
scores from the RCNN network. During the attack, we only focus
on the top𝑚 ROIs from both the networks to make the loss function
easier to converge. A supporting reason for this is that because
of the non-maximum suppression (NMS) process, the number of
ROIs will be limited to a certain amount, and many of the similar
bounding boxes will be removed. Therefore, the objective function
for mis-detection can be formally defined as follows:

argmin
𝛿

𝐿𝑐𝑙𝑠 (𝑥 + 𝛿)

with 𝐿𝑐𝑙𝑠 (𝑥) =
𝑚∑
𝑖

𝑘𝑖 ·
(
𝑍𝑏𝑔 (𝑥)𝑖 − 𝑍𝑟𝑝𝑛 (𝑥)𝑖 − 𝑍𝑡 (𝑥)𝑖

)
𝑘𝑖 =

{
1, if 𝑍𝑡 (𝑥)𝑖 < 𝛾

0, otherwise

(1)

where 𝑡 denotes the attack target, 𝑍𝑟𝑝𝑛 (·) denotes the objectiveness
scores predicted by the RPN network. 𝑍𝑏𝑔 (·) and 𝑍𝑡 (·) are the logit
values of background and target label from RCNN, respectively. We
set𝑚 to 100 throughout the whole paper as in the experiment we
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Figure 1: Illustration of the PointRCNN network architecture and workflow.

find it is enough to achieve the desired results; the confidence score
𝛾 is set to 0.9.

To simplify converging the objective function, we utilize the
concept of Feature Adversary introduced in [32, 47]. They aim to
generate adversarial examples by utilizing the features of guide
images with the attack target label. More specifically, let 𝑥𝑡 be the
benign examples with the target label. The adversarial examples
𝑥 + 𝛿 are generated by solving the following optimization problem:

argmin
𝛿

𝑑 (𝜙𝑘 (𝑥 + 𝛿), 𝜙𝑘 (𝑥𝑡 ))

s.t. 𝑑 (𝑥 + 𝛿, 𝑥) < 𝜏
(2)

where 𝑑 (·) is the distance function such as 𝐿𝑝 norm, 𝜙𝑘 (·) is the
intermediate feature of the 𝑘-th layer, and 𝜏 controls the amount of
the perturbation. This method can effectively generate adversarial
examples while targeting different intermediate layers, i.e., different
𝑘’s. Thus, we apply Feature Adversary on the layer prior to the
logits layer and utilize the feature vectors generated by a normal
car model. The objective function becomes:

argmin
𝛿

𝐿𝑐𝑙𝑠 (𝑥 + 𝛿) + 𝛼 × 𝐿𝑓 𝑒𝑎𝑡 (𝑥 + 𝛿, 𝑥𝑡 )

with 𝐿𝑓 𝑒𝑎𝑡 (𝑥, 𝑥𝑡 ) = 𝑑 (𝜙𝑘 (𝑥), 𝜙𝑘 (𝑥𝑡 ))
(3)

where 𝐿𝑐𝑙𝑠 (·) is defined in (1), and𝜙𝑘 (·) is the layer prior to the layer
of classification and bounding box regression in RCNN network.

In addition to the misclassification of nonexistent objects, the
bounding boxes of the falsely detected objects are considered to
ensure that the objects we generate satisfy the attacker’s goals, so
that the attack is not rendered ineffective. Specifically, we adjust the
orientation of the predicted bounding box to simulate oncoming
vehicles, instead of parallel ones. Given the input point set 𝑥 , the
objective function is defined as:

𝐿𝑏𝑜𝑥 (𝑥, 𝑥𝑡 ) = 𝑑 (𝜙𝑟 (𝑥), 𝜙𝑟 (𝑥𝑡 )) + 𝑑 (𝑍𝑟 (𝑥), 𝑍𝑟 (𝑥𝑡 )) (4)
where 𝜙𝑟 (·) denotes the orientation predicted by the RPN, and
𝑍𝑟 (·) denotes the orientation after the bounding box refinement in
RCNN. 𝑥𝑡 is a clean car model placed at our target location. This
function will be considered only if the corresponding objectiveness
score is greater than a pre-defined threshold.

3.2.3 Turning Adversarial Points into Physical Objects. We have
generated point cloud that can achieve adversarial effects. How-
ever, it is still not trivial to transfer these “virtual points” into real
road conditions. It is to be noted that though previous works [40]
also form adversarial objects, yet the their adversarial objects are

generated through surface reconstruction from adversarial point
cloud data. The uncertainty in the reconstruction process weaken
the attack success rate in real world environment. They also fail
to consider the mechanism of specific type of sensors and simply
apply random sampling to simulate the 3D sensors. In comparison,
We realize our attack by creating physical objects in the beginning
of attack that appear as adversarial point clouds when scanned by
Lidar. Comparing to the work in [4] who has similar process to
generate adversarial objects mainly for hiding purpose, the feature
vectors generated by a normal car model enable us to achieve a
different goal: deceiving the deep learning models viewing small
objects as larger vehicles.

To design such objects, we need to first simulate the working pro-
cess of Lidar sensors. We build our Lidar simulation tool according
to the user manual of Velodyne-Lidar-vlp-16, which is a commercial
Lidar sensor using an array of 16 infra-red (IR) lasers paired with
IR detectors to measure distances to objects. We also referenced a
simulation tool from [14]. By changing the parameters according to
the Velodyne manual the simulation of 64-laser Lidar or 128-laser
Lidar is also possible. The simulation tool creates a point cloud
from a scene based on 3D meshes. Adding a list of models and the
scene builder script easily creates random distributions of objects.
The Lidar script creates point clouds from these scenes by ray trac-
ing. By setting the parameter according to the configuration, the
simulation tool internally creates a set of rays, whose intersections
with a given 3D object are then calculated, returning a series of
3D coordinates of point cloud. The difference in the angle between
the rays can be specified during initialization of the Lidar class, as
well as the position of the Lidar sensor. Specifically, for the Lidar
simulation process, the following parameters should be given:

• Lidar parameters, such as position 𝑅 = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧), azimuth
resolution, etc.

• Object information including vertices 𝑣 ∈ R𝑛×3 and polyhe-
drons 𝑝 ∈ N𝑚×3.

In our adversarial settings, we choose to modify the object vertices
𝑣 by adding certainly designed perturbations 𝛿 , and leave other
information untouched. To simulate different viewing angles and
distances, we randomly place the Lidar at different pre-defined po-
sitions. Given the objects and the Lidar parameters, the simulation
process 𝐹 (·, ·) mainly contains the following tasks, which will be
described in details in the following sections.

(1) Line-plane intersection: Determine the intersection between
the rays and the object surfaces.
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(2) Point in polygon: Check whether there is any polygon, i.e.,
surface, that the point is inside of it.

(3) Distance comparison: Filter out the points belonging to the
polygons that are obstructed by other obstacles.

Given a set of polygons (represented by triangles in 3D space) and
Lidar rays (represented by lines in 3D space), the points captured by
Lidar can be calculated by intersecting the lines with the polygons.
Considering a polygon 𝑝𝑖 = {𝑣0, 𝑣1, 𝑣2 | 𝑣𝑖 ∈ R3} and a ray denoted
by its origin 𝑅 = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧) and direction 𝐷𝑖 = (𝑑𝑥 , 𝑑𝑦, 𝑑𝑧), we first
let 𝑛 = (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) be the normal vector of the polygon 𝑝𝑖 . The
point 𝑥𝑖 ∈ R3 can then be given by:

𝑥𝑖 = 𝑅 + 𝐷𝑖 ×
(𝑣0 − 𝑅) · 𝑛

𝐷𝑖 · 𝑛
(5)

Since this process is differentiable, we can integrate this proce-
dure into our optimization problem, so that it can be solved directly
using existing mechanisms. In practice, the gradients can be auto-
matically calculated within most of the deep learning frameworks
including TensorFlow and PyTorch.

After the line-plane intersection, points that are either obstructed
by other obstacles or not located inside the polygons will be filtered
out. The remaining points are the input to the PointRCNN.

To summarize, given an object 𝑋 = {𝑣, 𝑝} and Lidar sensor pa-
rameters 𝑆 , the input points 𝑥 captured by the sensor are calculated
according to the procedure mentioned earlier. Thus, our physical
world attack aims to mislead the model by adjusting the vertices of
the object 𝑣 so that the points captured by sensors will be altered
accordingly.

Let 𝐹𝑆 (𝑣, 𝑝) be the Lidar simulation function that generates point
clouds, and 𝑥 ′ = 𝐹𝑆 (𝑣 + 𝛿, 𝑝) be the point clouds captured from our
adversarial objects. The objective function is formulated as:

argmin
𝛿

𝐿𝑐𝑙𝑠 (𝑥 ′) + 𝛼 × 𝐿𝑓 𝑒𝑎𝑡 (𝑥 ′, 𝑥𝑡 ) + 𝛽 × 𝐿𝑏𝑜𝑥 (𝑥 ′, 𝑥𝑡 ) (6)

3.2.4 Physical Printing Constraints. In the previous section we
demonstrate the algorithm can design objects that have specialized
shapes such that they are classified as a target class by the victim
model. However, to realize these objects into a real road environ-
ment, we need to consider many physical constraints. Considering
the volume of popular 3D printer, we limit the size of adversarial
objects to 45cm × 45cm × 41cm, which is much smaller comparing
to common vehicles or pedestrians. We also force a large plane on
the bottom of the object so that the object can easily support itself.

Since our target is to generate an object that can mislead the
model, the “dis-similarity” between the original one and the mod-
ified one is not a critical concern. That is, the object we generate
do not have to be similar to the original one in our attack settings.
Thus, the distance constraints, such as 𝐿2 norm or Chamfer dis-
tance, will not be considered in our objective function to obtain
more flexibility in forming the shape of adversarial objects.

Instead of adding another term to objective function, we directly
decrease the perturbations to make sure that the length of each
axis will not exceed the pre-defined threshold. For example, if the
length of the object in 𝑥 axis is greater than the threshold 𝑙𝑥 , the
following action will be applied to enforce the size limit.

max{𝑣𝑖 | 𝑣𝑖 ∈ 𝑣} −min{𝑣𝑖 | 𝑣𝑖 ∈ 𝑣} > 𝑙𝑥 (7)
To make sure that the object can stand on the ground stably, we

also maximize the area of the object that fit on the x-y plane. First,
let 𝑝𝑖 = {𝑣0, 𝑣1, 𝑣2 | 𝑣𝑖 ∈ 𝑣} be a plane that fit on x-y plane, i.e., the
values of z axis are all zeros. The area can be calculated by:

𝐿𝑎𝑟𝑒𝑎 (𝑝) = ∥(𝑣1 − 𝑣0) × (𝑣2 − 𝑣0)∥2 (8)
Let 𝑝𝑔 ⊂ 𝑝 be the set containing the polygons on x-y plane, the
objective function can be re-written as:

𝐿𝑎𝑟𝑒𝑎 (𝑣, 𝑝) =
∑

{𝑣0,𝑣1,𝑣2 }∈𝑝𝑔
∥(𝑣1 − 𝑣0) × (𝑣2 − 𝑣0)∥2 (9)

where × is the cross product between two vectors. For those points,
only the 𝑥 and 𝑦 coordinates will be modified during the optimiza-
tion progress to make sure that there will be at least one polygon
that the object can rest on.

Finally, let the input object be 𝑋 = {𝑣 + 𝛿, 𝑝}, and the objective
function for our attack can be formulated as follows:

argmin
𝛿

𝐿𝑐𝑙𝑠 (𝑥 ′) + 𝛼 × 𝐿𝑓 𝑒𝑎𝑡 (𝑥 ′, 𝑥𝑡 )

+ 𝛽 × 𝐿𝑏𝑜𝑥 (𝑥 ′, 𝑥𝑡 ) + 𝛾 × 𝐿𝑎𝑟𝑒𝑎 (𝑣 + 𝛿, 𝑝)
with 𝑥 ′ = 𝐹𝑆 (𝑣 + 𝛿, 𝑝)

(10)

where 𝛼 , 𝛽 , 𝛾 are hyper-parameters that balance the different terms
in the objective function, and 𝐿𝑐𝑙𝑠 (·), 𝐿𝑓 𝑒𝑎𝑡 (·, ·), 𝐿𝑏𝑜𝑥 (·, ·), and
𝐿𝑎𝑟𝑒𝑎 (·, ·) represent classification loss, feature loss, location loss
and x-y plane loss. We set 𝛼 = 0.001, 𝛽 = 0.001 and 𝛾 = −0.001.

3.3 Black-box Attacks
Unlike white-box attacks, black-box attacks do not require internal
information of the target models, but solely rely on input-output
pairs. Black-box based attacks can be achieved through several
methods. By applying the transferability phenomenon and substi-
tution networks from adversarial attacks, white-box attack models
may keep their effectiveness against other models in black-box
scenarios [23], but the effects can be unstable. Zeroth Order Op-
timization (ZOO) [7] launch black-box attacks by modifying the
loss function such that it only depends on the output of the DNN,
and performing optimization with gradient estimates obtained via
finite differences. ZOO, however, suffers from the need for the huge
number of queries to the target models.

Our black-box attacks are inspired by work in [6], which first
integrates genetic algorithms into black-box adversarial attacks
against deep learning models. Genetic algorithm is a population-
based gradient-free optimization strategy. It requires well defined
genes, populations, fitness functions, mutations and crossovers and
recreates nature selection. The population of inputs generated from
the genes evolve through mutation and crossover to maximize their
fitness score. At every iteration, the candidate with the highest
fitness is preserved while the rest are replaced. New candidates are
generated by mutating and crossing over a pair of old candidates.
In our attack algorithms, the gene and corresponding populations
are meshes defined by vertices and faces. The genes are variants of
unit icosphere with small Gaussian noise. Mutation is achieved by
adding small random perturbation to the population according to a
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Table 2: Performance of the target models on car detection.

Model Easy Moderate Hard
PointRCNN 95.92% 91.90% 87.11%
PointPillar 94.82% 91.82% 88.57%
PV-RCNN 98.17 % 94.70% 92.04%

pre-defined mutation chance. Crossover describes the process in
which two candidates exchange their elements. The fitness function
evaluates the quality of each population member, which encourage
the population to evolve to maximize that function.

In our adversarial attack scenario, the fitness function includes
the following objectives that overall need to be minimized: A CW
like attack objective [5] which motivate the population so they can
be classify as certain object type by the target deep learning models:

𝑙𝑐𝑤 = 𝑓 (𝑥 + 𝛿) + 𝑐 · ∥𝛿 ∥𝑝
with 𝑓 (𝑥) = max {max

𝑖≠𝑦′
{𝑍 (𝑥)𝑖 } − 𝑍 (𝑥)𝑦′, 𝜅} (11)

where 𝑦′ denotes the attack target (in our case, the ‘vehicle’ label),
𝑍 (·) is the output of logits layer, and 𝜅 the attack confidence. The
hyper-parameter denoted as 𝑐 is used to balance the terms in the
objective function. In practice, 𝑐 can be found effectively using
binary search. The perturbation 𝛿 can be understood as the vectors
that describe the direction and magnitude of shifted vertices.

Several distance metric which help the mesh stay reasonable
shape. We also apply clipping function during mutation so the
perturbed vertices will not be too far from the realm, including
Laplacian loss 𝑙𝑙𝑎𝑝 , edge loss 𝑙𝑒𝑑𝑔𝑒 and normal loss 𝑙𝑛𝑜𝑟 of the evolv-
ing meshes. The definition of these three loss can be found in [1].
In all the fitness function is:

𝑙 = 𝑙𝑐𝑤 + 𝜔1 · 𝑙𝑙𝑎𝑝 + 𝜔2 · 𝑙𝑒𝑑𝑔𝑒 + 𝜔1 · 𝑙𝑛𝑜𝑟 (12)

where 𝜔1, 𝜔2 and 𝜔3 are coefficients. In this work we set 𝜔1 = 0.1,
𝜔2 = 1 and 𝜔3 = 0.01. Physical constraints in the white-box setting
are similarly applied. The details of the genetic-evolving attack can
be found in the Appendix.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
All experiments were carried out on a server with an Intel E5-2623
v4 2.60GHz CPU with 16GB RAM, Ubuntu 18.04, accelerated by
NVIDIA CUDA Framework 10.0 and cuDNN 7.0 with two NVIDIA
GeForce RTX 2080Ti GPUs. The adversarial objects are printed by
Creality CR-10 Max 3D Printer. The Lidar sensor used for scanning
is VLP-16 sensor provided by Velodyne. The outdoor test is carried
out on an empty road.
Victim Models.We choose PointRCNN as our target model in the
white-box attacks and Pointpillar with PV-RCNN in the black-box
setting. All these models are trained using the KITTI dataset [11]
with network architectures described in the previous section and
hyper-parameters proposed by the authors. We select the model
file provided by [16, 33, 34], which are trained on the train split
(3712 samples) and evaluated on the validation split (3769 samples)
and test split (7518 samples) of the KITTI dataset. The performance
on validation set can be found in Table 2.

Table 3: Mis-classification rate of our appearing attack using
perturbed polyhedrons.

Object models Mis-classification Rate
Adv_white PointRCNN 798/900 (88.17%)
Adv_black PointPillar 754/900 (83.7%)
Adv_black PV-RCNN 790/900 (87.7%)

Simulation Settings.We set the parameters of the Lidar simula-
tion tool according to the configuration of the VLP-16 Lidar. The
rotation speed per minute (RPM) is set to 600, and the azimuth
resolution is set to 0.2°. The vertical range is set to [-15°, 15°], and
the vertical resolution is set to 2°.
Genetic Algorithms Settings. In the genetic algorithm in black
box attacks, we initialize the mutation standard deviation at 0.05,
mutation probability at 0.2, use a population size of 160, and 1000
queries to compute fitness. The ratio of the leftover is set to 0.5.
Autonomous Driving Platform Setting. In the evaluation of im-
pact on real driving situation we choose the Apollo 6.0 [2] as the
autonomous driving platform running with Lgsvl simulator [31].
We run the simulation on the complete Baidu Apollo AD system
with all functional modules enabled, i.e., localization, transform,
perception, prediction, planning, routing, and control. The adver-
sarial objects as well as a similar-size normal cube will be loaded in
a single-lane map in Lgsvl simulator, where the Apollo-controlled
vehicle will drive along the lane. Since Apollo 6.0 update its Lidar
perception module based on PointPillar [16], the adversarial objects
are generated along the method in Section 3. The simulated test
vehicle is the Lincoln MKZ with 128-velodyne Lidar sensors, which
is also the the Baidu Apollo’s reference car. The test is carried in
the “singlelaneroad” map provided by the Lgsvl website.

4.2 Attacking Through Simulation of Digital
Objects

The appearing attack is launched by designing and placing the
objects based on the original polyhedron in the simulated Lidar
scanning scene. In this attack, we choose to place the Lidar along
a pre-defined position set, instead of moving the object. During
the attack, the Lidar will be placed at (𝑥,𝑦, 𝑧) where 𝑥 ∈ [−3, 3],
𝑦 ∈ [−1, 1], 𝑧 ∈ [0.7, 0.8], and the object is placed at (4,−2, 0). The
rates that our adversarial objects are mis-classified as vehicles are
shown in Table 3, with the detection threshold set to 0.3. The object
with label “Adv_white” is generated in the white-box setting. The
object with label “Adv _black” is generated in the black-box setting.
The visualization of our objects, as well as their 3D printed version,
can be found in the Appendix. For comparison, we visualize the
detection results using a normal car model and our adversarial
objects, also shown in the Appendix. Our objects are detected as
cars with significantly fewer captured points than from a normal
vehicle. This indicates that the model can be fooled by only a few
points, compared to benign examples.

4.3 Attacking with 3D Printed Physical Objects
We take various physical constraint into consideration and modify
the meshes of adversarial objects so that they can be 3D printed in
real world. We start the process with the original polyhedron and
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Normal box 1 Adv_white

Normal box 2 Adv_black

Figure 2: Visualization of the normal box, perturbed object
with size limited to 0.45𝑚 × 0.45𝑚 × 0.41𝑚 used in indoor ex-
periments.

Figure 3: Visualization of appearing attack in indoor sce-
nario with size limited to 0.45𝑚 × 0.45𝑚 × 0.41𝑚.

“recast” it into an adversarial object that can be captured by Lidar
and recognized as vehicle by the victim models. The printed objects
are placed in various locations in the front right of the Lidar. We test
the adversarial objects in both indoor and outdoor environments.
The results are shown in Figures 2 and 4 as well as Tables 4 and 5.
Indoor Experiment. In the indoor environment the height of the
Lidar is set to 0.80m and a 0.45m× 0.45m× 0.41m adversarial object
is placed across a 4m×7m area in front of the Lidar. We also use two
normal boxes with similar sizes as a control. The printed adversarial
object and the normal box are shown in Figure 2.

The results of presenting an indoor adversarial object is shown
in Figure 3. On the top is a photo showing the environment and on
the bottom are the detection results given by the model.

Table 4: Mis-classification rate of normal boxes and adver-
sarial object in indoor scenario.

Object Type Adv_white Adv_black Adv_black
Model type PointRCNN PointPillar Second
Detection

Rate
13/15
(86.6%)

14/15
(92.6%)

13/15
(86.6%)

Object Type Normal 1 Normal 2 Normal 2
Model type PointRCNN PointPillar PV-RCNN
Detection

Rate
0/15
(0.0%)

1/15
(6.7%)

1/15
(6.7%)

Figure 4: Outdoor experiment.

The mis-classification rate demonstrates that a normal box is
not recognized as a vehicle by the deep learning models, but our
adversarial objects can be continuously recognized as vehicles in
different locations of the foreground area (see Table 4). Specifically,
Table 4 shows the ratio of number of frames in which the object
was detected as vehicle against the total number of frames as well
as the mis-classification rate.
Outdoor Experiment. In the outdoor environment the height of
Lidar is set to 1.60m and 0.45m × 0.45m × 0.41m size adversarial
objects are placed at various roadside locations along the route
of the driving vehicle. The distance between the objects and the
vehicle is set to the range 1m × 10m. The Lidar is placed on the
top of the vehicle. The vehicle will then drive along the road while
we record the data from the Lidar. The laptop in the vehicle keep
recording the point cloud data captured by the Lidar frame by frame.
We again use some normal boxes with similar size as a control. The
printed adversarial object and the normal box with vehicle and
Lidar are shown in Figure 4.

The results from the outdoor point clouds are presented in Ta-
ble 5. We count the frames that the objects are detected as vehicles
to evaluate the attack. From Table 5 we can see that normal box will
not be stably recognized as a vehicle by the deep learning model,
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Table 5: Mis-classification rate of normal boxes and adver-
sarial object in outdoor scenario.

Object Type Adv_white Adv_black Adv_black
Model type PointRCNN PointPillar PV-RCNN
Detection

Rate
213/250
(85.2%)

219/314
(70.0%)

185/240
(77.1%)

Object Type Normal 1 Normal 2 Normal 2
Model type PointRCNN PointPillar PV-RCNN
Detection

Rate
5/220
(2.2%)

3/234
(1.2%)

10/255
(3.9%)

Apollo interface normal box

Figure 5: Apollo controlled vehicle drive through normal
roadside box.

but our adversarial object can be recognized as vehicles in different
locations of the foreground area with a high success rate. We also
observe that in the vision of Lidar sensor and deep learning models
they recognize the small adversarial boxes as a close vehicle, it may
cause severe security risks.

4.4 Attack Evaluation on Autonomous Driving
In this section we investigate the reactions of autonomous driving
vehicles facing our roadside adversarial objects. A vehicle con-
trolled by Baidu Apollo 6.0 is set to drive on a straight single lane
road in the Lgsvl simulator. To start, we place a cube along the
road, and observe that the Apollo controlled vehicle does not re-
act and continues its normal driving, as shown in Figure 5. How-
ever, when the roadside objects are replaced with adversarial ones,
Apollo recognizes it as a extremely close vehicle and blocks the
route. Depending on the situation, two actions are taken by the
Apollo controlled vehicle. The first action is to stop completely,
fully jamming the road. The second reaction is to make a sudden
lane change in order to bypass the observed, yet nonexistent, ve-
hicle, which may create a traffic accident as the AV must cross
the double yellow line and obstruct traffic flowing the other lane.
Figure 5 shows both actions. A video demonstration can be found
at https://sites.google.com/view/roadsideadversary.

4.5 Performance Comparisons with Similar
Works

In this section we provide the attack performance comparisons with
similar works in Table 6. Though it may be difficult to compare
the success rates directly due to different adversarial settings, the
results show that our attack can still obtain comparable success
rates while considering physical constraints in real world.

Apollo interface 1 completely stop

Apollo interface 2 lane changing

Figure 6: Apollo controlled vehicle influenced by the adver-
sarial roadside objects.

Table 6: Comparisons of 3D Adversarial Attacks on Lidar
Sensors.

Approach Success rate
in simulation

Success rate
in road test

Impact on
driving system

[41] 80% No data No data

[3] 75% No data Emergency brake
or vehicle freezing

[4] 71%-100% 67% No data
[37] 80% No data No data

Ours 83%-87% 70%-85% Emergency brake
or lane changing

5 EVALUATION OF DEFENSE
In this section, we evaluate our adversarial objects in simulation
against existing defense mechanisms, including outlier point re-
moval with kNN distance and the addition of random Gaussian
noise proposed in [48]. The experimental results show that these
defense mechanisms fail to detect our adversary object both in
simulation environment. To effectively detect potential adversarial
physical objects that may result in false-positive vehicle detection
output, we propose a novel defense method to detect this type of
attack based on the physical property of Lidar sensors. Specifically,
by measuring the physical relation between the points inside the
bounding box and the location of Lidar sensor, we can distinguish
points from adversarial objects. We focus on white-box attacks
in the defense discussion as it achieve higher success rate in the
outdoor experiment, thus reveal more threat.

5.1 Outlier Removal with kNN Distance
This approach is originally proposed in [48] to defend against ad-
versarial attacks designed for PointNet and PointNet++, two widely
used 3D point cloud classification models. It is considered that ad-
versarial examples are achieved by shifting points away from the
object, so removing distant points should weaken the attack. Thus,
this defense aims to find all outlier points and removes them before
the point clouds are processed by DNNs. As a quick review, for
each input point 𝑝 , we find its k-nearest neighbors, and calculate
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Table 7: Mis-classification rate after kNN outlier removal
with 𝑘 = 5 and different 𝛼 .

𝛼 Mis-classification Rate Avg. Points Removed
0.0 745/900 (82.8%) 1.17%
0.01 738/900 (82.0%) 1.18%
0.1 723/900 (80.3%) 0.19%

the averaged distance 𝑑𝑝 . Then, for all 𝑑𝑝 , the mean 𝜇 and stan-
dard deviation 𝜎 are calculated. A point 𝑝 will be removed if its
corresponding 𝑑𝑝 satisfies:

𝑑𝑝 > 𝜇 + 𝛼 × 𝜎 (13)

where 𝛼 is a user-defined parameter. We evaluate our Adv_black
adversarial object in simulated scene, as described in previous sec-
tions. The results can be found in Table 7. Different 𝛼 values are
used to evaluate the defense, and the averaged percentage of points
removed is also reported.

We can found that only a few points will be removed even in
different 𝛼 values (about 1.18%). It means that the average kNN
distances of each point cloud are quite similar, so that only a few
will exceed the threshold. Due to the low removal rate, this defense
does not reduce our success rates significantly.

5.2 Random Gaussian Noise
This defense is implemented by adding random Gaussian noise to
the input point clouds. It is considered that the adversarial examples
are less stable than the clean ones, since they are likely to locate
near the decision boundary to minimize the amount of perturbation.
Thus, after adding random noise, the predictions of the clean data
should be mostly unchanged. However, the adversarial examples
might be affected, and the attack would fail. More specifically, if an
input point cloud 𝑥 is clean, the predictions should be the same:

𝑓 (𝑥) = 𝑓 (𝑥 + 𝑁 (0, 𝜎2)) (14)

where 𝑓 (·) denotes the prediction of the model, 𝑁 (𝜇, 𝜎) denotes
the random Gaussian noise. In contrast, if an input point cloud is
adversarial, the predictions might be different:

𝑓 (𝑥) ≠ 𝑓 (𝑥 + 𝑁 (0, 𝜎2)) (15)

Since there are only two classes in our model, which are ‘back-
ground’ and ‘car’, we directly check whether the object is still
detected by the model or not after adding random noise. We eval-
uate the defense by setting 𝜇 = 0 and using 3 different 𝜎2 values:
0.001, 0.01, and 0.1. The input point clouds are obtained by simula-
tion with our Adv_black object. The results can be found in Table
8, with the mis-classification rates using a normal car model for
comparison.

As 𝜎2 increases, the mis-classification rates of both benign and
adversarial examples decrease due to the Gaussian noise. How-
ever, in some cases, e.g., when 𝜎2 = 0.01, the success rates de-
crease by about 25%. Although some of our adversarial examples
are invalidated due to this defense, we still obtain reasonable mis-
classification rates.

Table 8:Mis-classification rates with randomGaussian noise
added using original car model and Adv_black adversarial
object.

𝜎2 Car Model Adversarial Object
0.001 863/900 (95.9%) 745/900 (82.8%)
0.01 849/900 (94.3%) 537/900 (59.7%)
0.1 143/900 (15.9%) 30/900 (3.3%)

Table 9: Accuracy of the SVM for density based defense.

Dataset Object Accuracy
Training Car 1 885/900 (98.33%)

Set Adversarial object 890/900 (98.89%)
Test Car 2 883/900 (98.11%)
Set Adversarial object 893/900 (99.22%)

5.3 Defense based on Physical Properties
The results in the previous sections reveal that it is nontrivial to
distinguish points generated from adversarial objects from those of
real objects through their features. However, we observe that the
points from the adversarial objects have different physical prop-
erties when compared to points from normal vehicles, and these
differences could be applied to design detection mechanisms.
Density based Method. From our observation, since the adversar-
ial objects (either natural or artificial) are smaller and lower than
normal vehicles in real world due to the size limitation, the points
captured by Lidar should be less than the ones from vehicles. Thus,
we propose a defense approach based on the number of points
within a pre-defined region of each predicted bounding box. This
defense aims to distinguish the adversarial bounding boxes from
the benign ones. Our defense mechanism takes action after a car is
detected by the model, it further determines whether the detection
comes from real vehicles or roadside objects. More precisely, for
each predicted bounding box, we find the point 𝑝𝑛 which is nearest
to the Lidar sensor by Euclidean distance and located inside the
bounding box. Then, we calculate the number of points that are lo-
cated inside the sphere with center 𝑝𝑛 and radius 𝑟 . In our settings,
we set 𝑟 = 0.35, which is considered large enough to separate the
adversarial objects and normal vehicles. To distinguish the benign
and adversarial bounding boxes, we simply utilize a Support Vector
Machine (SVM) to classify the predicted results. We use a normal
car model (denoted as Car 1) and our adversarial objects to generate
the training set, and we test the SVM using the other adversarial
objects and another normal car (denoted as Car 2). Both the car
models are collected from the Internet, and the visualization can
be found in Figure 8. The accuracy of our SVM to distinguish real
vehicles and adversarial object can be found in Table 9. The decision
boundary of the SVM is shown in Figure 7 (a). We can find that in
most cases we can correctly distinguish the adversarial examples
from normal vehicles with this property.
Average Distance based Method. From the observation of the
point clouds, we find that in some cases, the 1 nearest neighbor (1-
NN) distance of a point can be greater than the others. For example,
considering the point clouds captured from a vehicle, as shown in
Figure 9 (a). Since a normal vehicle is larger than the adversarial
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(a) Density based defense.

(b) Average distance based defense.

Figure 7: Visualization of the decision boundary of the
SVMs.

Table 10: Accuracy of SVM for average distance based de-
fense.

Dataset Object Accuracy
Training Car 1 900/900 (100%)

Set Adversarial object 898/900 (99.78%)
Test Car 2 899/900 (99.89%)
Set Adversarial object 899/900 (99.89%)

objects, the Lidar may capture the points with various distance
from the same object, making the 1-NN distance become larger.
In contrast, the points generated from our adversarial objects are
located in a smaller region, which can be found in Figure 9 (b) and
(c). Thus, we design another defense approach based on the average
1-NN distance of a point cloud belonging to a predicted object: For
each bounding box, we calculated the averaged 1-NN distance of
the point clouds located inside the box. More specifically, given
{𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛} ∈ 𝑃 be the point sets located inside the bounding
box. For each 𝑝𝑖 , we find its 1-NN distance by:

𝑑𝑖 =𝑚𝑖𝑛
𝑗≠𝑖

∥𝑝𝑖 − 𝑝 𝑗 ∥2 (16)

The mean 1-NN distance can be obtained by averaging all 𝑑𝑖 ’s.
Similar to the previous defense mechanism, we classify the pre-
dicted bounding box by a SVM. We use Car 1 and the adversarial
objects to generate the training set, and evaluate the SVM using
the Car 2 and other adversarial objects. The accuracy and the de-
cision boundary of the SVM can be found in Table 10 and Figure
7 (b), respectively. We can find that this defense achieves similar
performance, compared to the density based defense. Most of the
benign and adversarial points are correctly classified.

6 DISCUSSION AND FUTUREWORKS
6.1 Discussion
Comparison of the Indoor and Outdoor Experimental Re-
sults. We observed that the success rate of the attacks decreases
significantly when the adversarial object is moved from an indoor
environment to an outdoor environment. Several factors may be re-
lated to this phenomena. First, the indoor environment is controlled
while the outdoor environment is more complex with less regular
background points. Furthermore, the uneven floor of the outdoor
environment may cause the real point cloud data captured by Lidar
deviate from the one we simulated. Another possible reason may be
the sparse number of lasers at a low angle our Lidar (VLP-16) has.
Once deployed on a high position such as vehicle roof, it may not
capture the adversarial object on low ground with enough detail.
Comparison of the white-box and black-box attacks. We ob-
served that white-box attacks and black-box attacks both can gener-
ate effective robust adversarial objects in simulation environments
and real road environments. Though black-box attacks do not re-
quire the internal information of the target models thus can be
launched flexibly, the high computation cost lead to far more time
to compute an adversarial mesh comparing to the white-box attack.
On the other hand, the internal information enhance the attack
success rate of white-box attack in both simulated environment
and real-world environment.
Origin of the Existence of Adversarial Points. The reasons for
the general existence of adversarial examples against many types
of deep learning models are still not thoroughly understood. In our
case, during the experiment we observe that only 50-100 points
from the adversarial objects can trigger the target deep learning
model to determine the existence of a vehicle. By viewing the KITTI
dataset [11], we find that in two situations small amount of points
from normal vehicles are labeled as vehicles: distant vehicles and oc-
cluded vehicles. We speculate that the deep learning models trained
by the KITTI dataset somehowmanaged to “remember” the features
from these two situations. The adversary points generated from
the objects can mimic these features so they can be mis-detected as
vehicles by the deep learning models. Similar conclusions are also
presented in [37].

6.2 Future Works
Transferability. Though we prove our method effective against
PointRCNN models in both digital and physical domains, transfer-
ring our method of adversarial object generation to deep learning
based perception modules that use other algorithms is still un-
proven. In subsequent work we will investigate methods to launch
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more successful black-box attacks in the scenarios even queries to
the target models are more restrictive.
Improving the Robustness in the Real Road Environment.
The results in the real road test reveal that our current method
to generate adversarial objects neglect some characteristics of the
physical world, causing the decreasing of success rate of the attack.
In the future, we will adjust the simulation tool and attack process
for better performance in the outdoor driving test.
More Defense Mechanisms. In this work we test our adversarial
attacks against two simple defense mechanisms specifically de-
signed for potential adversarial 3D points. We also propose two
effective defense mechanisms based the different physical property
between adversarial points and normal points. However, consider-
ing the rapid development of various defense mechanisms against
adversarial examples like the recently proposed scheme in Usenix
20 [37], it may be worth effort to explore further defense mecha-
nisms and extend the current attacks to them.

7 CONCLUSION
In this paper, we present a novel attack algorithm that generates
manufacturable 3D objects which, when read by Lidar, create ad-
versarial point clouds against deep learning models. This attack
starts by searching for purely digital adversarial point clouds. We
ensure these point clouds can be created in the physical world by
building a watertight mesh from them. We then 3D print this mesh.
In our experiments we demonstrate that our attack is feasible both
in digital and physical domains. The attack can also be launched in
both white-box and black-box scenarios. Our physical objects can
function under diverse conditions such as in both road-side tests
and indoors. Our method also remains effective even when state
of the art 3D adversarial Example defenses are employed. Thus,
we additionally propose a detection mechanism effective against
this type of attack. The evaluation of the impact on AV control is
also presented by importing the adversarial objects into a virtual
map. We examine how an Apollo controlled vehicle responds when
facing such objects, illustrating the practical risks of placing our ad-
versarial objects along the roadside. We hope our work may provide
motivation and inspiration for following works targeting security
problems related to Lidar based perception and corresponding deep
learning models.
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A VISUALIZATION OF OBJECTS AND SCENES
A.1 Visualization of the vehicle, objects with

printed form
In Figure 8we demonstrate a few visualizations of carmodels we use
and the resulting adversarial objects created through our method,
for both white and black box results. It is clearly evident that both
methods produce objects extremely dissimilar to their reference
to human senses, but which nonetheless are seen as vehicles by
AV perception modules. Note that both objects are easily manufac-
turable through additive methods, and can independently maintain
their correct orientation in the physical world. It is interesting to
note that the two shapes are dissimilar from each other in addition
to the reference vehicles, with the white box method producing a
long angular protrusion that is absent in the black box method.

Car 1 Car 2

Adv_white Adv_black

Printed Adv_white Printed Adv_black

Figure 8: Visualization of car models, our generated adver-
sarial objects and their printed versions.

A.2 Visualization of the scene adversarial
objects detected as vehicle

We show in Figure 9 the bounding boxes and point cloud data gen-
erated by AV perception systems that detect our adversarial objects.
It is evident that although the bounding boxes are appropriately
sized, there are far fewer point cloud points in them, and the points
are arranged differently than with a typical car model. One can also
note that the bounding boxes are always formed perpendicular to a
certain plane of point cloud detect ions from the adversarial objects.
By controlling the orientation of this plane to a victim, it is possible
to control the direction of the resulting bounding box. This also

indicates that the generating plane must be clearly visible by the
victim for the attack to be successful.

(a) Detection example using normal car model.

(b) Detection examples using Adv_white object.

(c) Detection examples using Adv_black object.

Figure 9: Visualization of detection results using normal car
model, Adv_white, and Adv_black objects.

A.3 Genetic-attack algorithm
The pseudocode of our genetic-attack algorithm to generate 3d
adversarial objects is shown below in Algorithm 1. This is a fairly
standard approach to a genetic algorithm.

Algorithm 1 Genetic-evolving black-box attack
Input: Input mesh 𝑥 , target model 𝑀 , number of generations 𝑇 ,

population size 𝑁 , fitness function 𝐹 , mutate chance 𝑐 , param-
eter 𝐿.

Output: Adversarial mesh 𝑥 ′

1: for 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1, 2, . . . , 𝑁 do
2: Initialize populations by adding small random Gaussian

noise to the vertices of 𝑥
3: end for
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, . . . ,𝑇 do
5: Score the populations according to the fitness function 𝐹

and sort the population according to the scores.
6: Keep the best 𝐿 populations according to the scores as the

leftover
7: Mutate the the populations in the leftover according to the

mutate chance 𝑐
8: Split the populations in the leftover and crossover them to

generate 𝑁 − 𝐿 children and append them to the population
9: end for
10: return the first population as 𝑥 ′
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