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Abstract— This research uncovers that wireless charging of 
mobile phones generates a leakage magnetic field in the 
surrounding space, containing information about charging power. 
Using longwave radio technology with a ferrite rod antenna, signal 
detection extends to 1.5 meters, enabling inconspicuous 
measurement. Extracting features from the magnetic field 
waveforms, machine learning trains a Deep Neural Network 
model to distinguish user’s activities on the phone with 100% 
accuracy. This highlights the privacy risks posed by this wireless 
charging technology, providing valuable insights into potential 
privacy concerns. 

Keywords— security and privacy, side channel attacks, wireless 
charging.  

I. INTRODUCTION 

In today's digital landscape, cellphones play a pivotal role in 
our daily lives, serving as our primary means of communication, 
information access, and task management. The growing reliance 
on mobile devices for both personal and professional purposes 
has made them indispensable tools. However, this increasing 
integration of smartphones into every aspect of our lives has 
raised substantial concerns about data privacy and security [1-
4]. With an abundance of personal information stored on these 
devices, the digital age has brought about heightened awareness 
of the need to safeguard our data from potential threats and 
breaches. 

The continuous advancements in power electronics 
techniques [5][6][7] and the emergence of novel power 
electronic devices [8][9] have propelled our smartphones to new 
levels of performance and functionality. These innovations have 
not only made our phones more capable but have also introduced 
convenient wireless charging methods [10]. However, the 
increasing switching frequency [11][12] and faster switching 
speed [13] also results in an unintended consequence: the 
generation of electromagnetic interference (EMI) noises [14] 
during their operation. While EMI receives extensive research 
attention within the field of electromagnetic compatibility 
(EMC)[15], its significance in the context of cybersecurity 
should not be underestimated. Recent research has illuminated 
the notion that these EMI noises can carry information relevant 
to users' activities [1-4]. And it has been shown that hackers can 
potentially exploit this avenue to infer sensitive information, 
thereby exposing vulnerabilities in the security [2][3] and 
privacy [1] of smartphone users. 

In the past, hackers typically had to physically access a 
phone, its cables, or directly connected devices to collect EMI 
noises for information gathering [1][2]. Remote collection of 
these noises for eavesdropping was challenging [3] due to the 

weak strength of the radiated EMI produced by phones. 
However, the widespread use of wireless charging techniques 
may change this situation. 

Cellphone wireless charging solutions utilize magnetic field 
to transfer power to the phone. However, a fundamental 
challenge arises due to the inherent gap between the phone and 
the charger, preventing the magnetic circuit from being a perfect 
closed system and resulting in leakage fields [16] extending into 
the surrounding space [17]. These leakage fields effectively 
mirror the characteristics of the charging waveform. 
Consequently, hackers have the capability to sense variations in 
the charging waveform by monitoring this leakage field [18][19] 
from a distance, enabling them to infer fluctuations in the 
charging power.  

Furthermore, the leakage field can contain more detailed 
power-related data. For instance, the widely adopted Qi 
standard, commonly used in consumer electronics for wireless 
charging, employs in-band communication to transfer data 
between the phone and the charger [20]. That means, the phone 
and the charger transmit the data by modulating the transmitted 
power waveform. By eavesdropping on the leakage field, 
hackers gain access to the communication contents, including 
commands and reports about the power close-loop control 
process within the Qi system. It's crucial to note that this data is 
typically not encrypted, and the protocol is publicly available in 
the Qi standard documents accessible online [20]. In summary, 
through remote sensing of the leakage field emitted by a 
wirelessly charged phone, hackers can deduce trends in the 
phone's charging power, revealing a previously unrecognized 
security vulnerability in the wireless charging process. 

Allowing hackers to gain access to the user's phone power 
trend has direct consequences, enabling them to infer users’ 
activities on the device. Research has already shown that a user's 
actions on a smartphone leave recognizable features in the 
phone's charging power. By extracting and identifying these 
features, hackers can make practical guesses about the types of 
apps running on the phone and potentially other more detailed 
information. An emerging trend in wireless charging technology 
is to minimize disruptions to users' regular phone usage during 
the charging process. Compact wireless chargers like MagSafe, 
for instance, allow users to hold their phones while charging, 
while other designs enable users to place their phones at an angle 
on a tabletop for ease of operation. Ongoing research is also 
exploring extending the range of wireless charging and 
enhancing the flexibility of phone positioning during the 
charging process. This trend makes scenarios where people use 
their phones during wireless charging more common. 
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Consequently, if there is a higher risk of leaked behavioral 
information during wireless charging, the resulting privacy 
concerns will become increasingly severe as wireless charging 
technology matures.  

The leakage of information regarding a user's app usage 
poses significant threats to an individual's privacy [3] and 
cybersecurity [2]. Even the seemingly innocuous timeline of 
apps accessed can unveil substantial insights into a person's 
personal life, preferences [1], and behaviors. This information 
forms the building blocks for creating a detailed profile of the 
victim, potentially resulting in a severe invasion of their privacy. 
Moreover, this knowledge becomes a potent tool for hackers in 
devising convincing phishing attacks. By leveraging their 
understanding of the victim's app preferences, attackers can 
tailor deceptive messages that appear to originate from trusted 
sources, such as a recently used app, increasing the chances of 
successful social engineering. Furthermore, there is a risk of the 
collected data being traded or shared with third parties, 
exacerbating concerns related to personal privacy and exposing 
individuals to potential exploitation. These threats underscore 
the importance of safeguarding personal data and devices in an 
increasingly interconnected digital landscape [19]. In this 
context, comprehensive cybersecurity measures and user 
education become imperative to mitigate these emerging risks. 

It should be noted that distinguishing subtle differences in 
the power waveform of a phone when running various apps is a 
challenging task for humans. Identifying the specific 
characteristics of charging power fluctuations is also a complex 
and difficult task. 

This is where Deep Neural Networks (DNN) offer a 
significant advantage [21]. DNN excels in complex data analysis 
and pattern recognition. So, this research employs DNN 
technique in this task. By training a DNN on a dataset of power 
waveforms associated with different app usage scenarios, the 
network can learn to recognize and classify the slight variations 
in the charging power waveform associated with different app 
activities with a high degree of accuracy. 

This paper is organized as follows. Section II-A will 
introduce the characteristics of power waveforms in a Qi-
compatible wireless charging system and the relevant 
communication protocols. In Section II-B, the physical 
mechanism of the eavesdropping will be covered. Section III 
will introduce the DNN technique utilized to analyze collected 
signals and infer user activities. The experimental validation of 
the proposed threat scenario is presented in Section IV. Section 
V will conclude this paper. 

II. PHYSICAL PRINCIPLES OF POWER-RELEVANT INFORMATION 

LEAKAGE IN WIRELESS CHARGING SYSYTEM 

A. Magntic Field for Wireless Charging Carries Information. 

As the most widely used industry standard for wireless 
charging in the consumer electronics sector, the Qi standard 
specifies the structure of wireless charging systems. Figure 1 
illustrates a typical main circuit structure of a wireless charging 
system as outlined in the Qi standard.  

The inverter contained within the Wireless charger generates 
an AC square wave voltage 𝑉௜௡௩  in the range of 100kHz to 

200kHz. This voltage 𝑉௜௡௩ is applied to a primary coil connected 
to the charger, producing a current 𝐼௣  and then generating a 
magnetic field around the primary coil. Most of the magnetic 
flux crosses the gap between the charger and the charged phone, 
reaching the location of the secondary coil inside the phone. 
According to Faraday's electromagnetic induction law, this 
periodically changing magnetic field induces voltage and 
current in the secondary coil. After subsequent processing such 
as rectification and regulation, it charges the phone's battery. 

 
Fig. 1. Schematic of a wireless power transfer system. 

There are two ways in which a wireless charging system can 
change its charging power. First, after communication and 
negotiation between the phone and the charger, the charger can 
initiate a change in the charging power. The charger changes the 
transmission power by altering the frequency and duty cycle of 
𝑉௜௡௩ . Because the structure of the wireless charging system 
exhibits the characteristics of a resonant converter, its 
transmission gain is frequency-dependent, and, therefore, 
changing the frequency of 𝑉௜௡௩  can modify the power of 
transmission. This alteration is reflected in the alternating 
magnetic field generated around the primary coil in the form of 
changes in amplitude and frequency. 

In the second scenario, 𝑉௜௡௩  of the charger remains 
unchanged, but the load of the phone itself undergoes a change. 
This change can result in variations in the amplitude or phase of 
the current in the primary coil. Since the current in the primary 
coil is the source of the magnetic field, the amplitude and phase 
of the magnetic field will also change accordingly. 

In summary, because the magnetic field at the wireless 
coupling stage serves as the medium for transferring power from 
the wireless charger to the phone, changes in wireless charging 
power will manifest in corresponding alterations in the 
frequency, amplitude, or phase of the magnetic field. In other 
words, the information about changes in wireless charging 
power is contained within the waveform of the magnetic field. 

In addition, the waveform of the magnetic field also contains 
communication information, the content of which is directly 
related to changes in charging power. Figure 2 illustrates the 
communication structure designed by the Qi standard for data 
exchange between the phone and the charger. Since the phone 
and the charger are not physically connected, when the phone 
needs the charger to adjust 𝑉௜௡௩ to help changing the charging 
power, it needs to transmit messages wirelessly to the charger. 

The Qi standard specifies that the way a phone transmits data 
to the charger is by overlaying binary disturbances on its load 
impedance, thereby causing fluctuations in 𝐼௣  in the charger's 
coil. The charger detects these special fluctuations in 𝐼௣  to 
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obtain the information sent by the phone. Since the current in the 
primary coil is directly related to the magnetic field, this 
communication information is reflected in the magnetic field as 
well. 

 
Fig. 2. A block diagram of the communication structure in a Qi-compatible 
wireless charging system. 

When the charger needs to respond to the phone's requests 
or send data to the phone, it does so by adding small deviations 
to the frequency of 𝑉௜௡௩. This causes 𝑉௜௡௩ 's frequency to jitter 
around the frequency required for power transmission. The 
phone detects changes in the system's operating frequency to 
obtain the data sent by the charger. Since the frequency of the 
magnetic field is the same as that of 𝑉௜௡௩, this communication 
information is also reflected in the magnetic field. 

According to the Qi standard, for the communication 
between the phone and the charger, the encoding relationship 
between the physical signal and binary values follows 
Differential Bi-phase Encoding Scheme". Binary bits are 
composed in a Least-Significant-Bit (LSB) 11-bit asynchronous 
serial format to form a byte. Bytes are structured in a 
"Header+Message+Checksum" format to create a data packet. 
Communication is not encrypted, and the meaning of the content 
within the data packet is detailed in the publicly available Qi 
standard. Therefore, once the communication waveform is 
obtained, its content can be completely decoded. 

Among the data packets, two types of data packets have the 
closest relationship with charging power: the Control Error (CE) 
packet and the Received Power (RP) packet. Both are data 
packets sent by the phone to the charger. The CE packet contains 
a value that measures the deviation between the actual received 
power of the phone and the target charging power. The charger 
uses the CE data packet to adjust 𝑉௜௡௩ , enabling closed-loop 
control of the charging power. The RP packet contains real-time 
information about the actual charging power that the phone is 
receiving. The phone reports real-time power to the charger to 
help the charger calculate power losses during transmission and 

determine if there are any safety concerns. By detecting the 
content of these CE and RP data packets through the magnetic 
field, the charging power fluctuation curve of the phone can also 
be outlined. 

In summary, during the wireless charging process, 
fluctuations in transmission power are reflected in changes in 
the amplitude, phase, and frequency of the magnetic field 
waveform. Communication content related to power adjustment 
is also mirrored in the magnetic field waveform. By measuring 
changes in the magnetic field, it is possible to understand the 
variations in wireless charging power. 

B. Detect Magnetic Field with Radio Reception Technology. 

Due to the inevitable air gap in the magnetic path between 
the charger and the phone, there is significant leakage of the 
magnetic field into the surrounding space. The leaked magnetic 
field exhibits a waveform very similar to the original magnetic 
field. As a result, the information contained in the original 
magnetic field, as described earlier, also exists in the leaked 
magnetic field. Therefore, for a phone being wireless charged, 
hackers can extract the information from the leaked magnetic 
field measured from a distance without physical contact. Then 
they obtain the phone's charging power curve, and ultimately 
infer the user's activities on the phone. 

Due to the operation frequency of wireless charging ranges 
from 100kHz to 200kHz, and the coil dimensions are in the 
centimeter range, the electromagnetic radiation in the far field is 
extremely weak. The leaked magnetic field distributed within a 
few meters of the phone is mainly in the near field, and its field 
strength rapidly attenuates with distance. So, it will be more 
practical for the hackers to eavesdrop on the leakage field is 
within several meters. When measuring the field strength of the 
leaked magnetic field within this range, radio reception 
technology is needed to enhance the quality of signal reception. 
A typical radio reception solution is illustrated in Fig. 3. 

 
Fig. 3. A block diagram of a signal reception system for the measurement of 
the leakage field. 

The main components in Fig. 3 include the receiving 
antenna, bandpass filter, active signal amplifier, mixer, 
intermediate frequency (IF) amplifier, and the chips for 
subsequent signal analysis or decoding. Since the frequency of 
the leaked field is low and majorly magnetic field, a ferrite rod 
antenna can be used as the receiving antenna, and the coil 
winding should use Litz wire to improve the quality factor. The 
bandpass filter is used to block signals from unwanted frequency 
ranges, with the passband designed between 100kHz and 
200kHz. The received signal is amplified by the RF amplifier, 
then the mixer raises the signal frequency to the intermediate 
frequency. In practical applications, the Local Oscillator's 
frequency is dynamically adjusted to precisely select the 
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operating frequency, ensuring real-time tracking of the wireless 
charging process. This enables the most effective measurement 
of the actual leaked magnetic field waveform. 

As described in Section II-A, the relationship between the 
leakage magnetic field signal and the charging power is reflected 
in two aspects. On one hand, it involves the analog 
characteristics of the signal itself, such as frequency, phase, and 
amplitude. On the other hand, the magnetic field’s waveform 
carries digital communication contents related to the charging 
power control. 

Once the leaked magnetic field signal is measured using the 
previously mentioned radio reception device, its analog signal 
characteristics can be directly extracted. The extraction of 
communication content can be accomplished using amplitude 
demodulation method for the following reasons: In cases where 
the phone sends data to the charger, the Qi standard specifies 
that the phone controls the load to toggle between two values 
near the actual load, carrying binary data in the form of load 
fluctuations, which is to be detected by the charger. This 
modulation method primarily affects the amplitude of the 
magnetic field, which also fluctuates with the modulation signal. 
Therefore, amplitude demodulation method is suitable for the 
extraction of the communication signal. The subsequent 
processors will digitize the signal and decode for its contents. 

In cases where the charger sends data to the phone, the Qi 
standard specifies that the charger controls its operating 
frequency to superpose an intermittent shift upon the normal 
operation frequency, and the phone receives the signal by 
detecting frequency fluctuations. Since the above described 
receiving circuit utilizes the Local Oscillator, Mixer, and 
narrowband IF amplifier to selectively detect the signal at the 
normal operating frequency, its gain at frequencies beyond the 
passband is significantly lower than that at the operation 
frequency. Thus, when the charger shifts the operation 
frequency, the output of the IF amplifier will significantly 
reduce in amplitude. So, the charger's frequency modulation also 
results in changes in the output amplitude of the IF amplifier. In 
this case, amplitude demodulation is also a preferable method 
for signal extraction. 

Based on the analysis provided, a common longwave radio 
with a ferrite rod antenna is well-suited for receiving this signal. 
In the field of radio, the longwave (LW) band typically refers to 
the frequency range of 100kHz to 300kHz and employs 
Amplitude Modulation (AM). So, LW radios come with circuits 
for Amplitude Demodulation. Additionally, the advantage of a 
ferrite rod antenna is its smaller size compared to an electric field 
antenna when receiving low-frequency electromagnetic waves. 
This makes it a common choice in the design of LW radios, and 
suitable ferrite rod LW radios are readily available in the market. 

As a result, modifying a ferrite rod LW radio for the 
detection of leakage magnetic field is a convenient choice, 
which also reduces the barrier for hackers to use this 
eavesdropping technique. This experiments in study will be 
based on a modified ferrite rod LW radio. 

III. DESIGN OF DEEP NEURAL NETWORKS FOR WAVEFORM 

ANALYSIS AND PHONE ACTIVITY INFERENCE 

Section II introduces the techniques to obtain leakage 
magnetic field waveforms and extract communication contents 
from these waveforms. The ultimate objective is to utilize this 
collected information to infer user activities on the phone. 
However, identifying the intricate waveform characteristics and 
establishing the connection between charging power trends and 
specific app activities presents considerable challenges for 
human analysis. To address this, Deep Neural Networks emerge 
as a promising solution. In this section, an exploration is 
conducted into the effective utilization of deep neural networks 
(DNN) to address this particular task, providing valuable 
insights into how DNNs can be applied and their potential to 
overcome the intricate hurdles associated with it. 

As an overview of the model, it is trained using waveform 
data from the leakage magnetic field that is acquired while 
various apps are running on the phone. Once the training is 
complete, the model is expected to tell which app is currently 
running on the phone based on the given leakage field 
waveform. 

Data preprocessing is a crucial step in our training process. 
As discussed in Section II, the waveform carries information in 
two ways: through the inherent characteristics of the raw traces 
at the operation frequency and via the CE Packets and RP 
Packets. To maximize the utility of these potential features 
within the traces, a two-fold data preprocessing approach is 
employed. This approach is common in machine learning 
workflows to ensure that the data used for training and testing 
models is appropriately cleaned, transformed, and organized.  

The first step, Data Cleaning and Preprocessing, comprises 
two key aspects. First, the Short-Time Fourier Transform 
(STFT) technique is used to generate spectrograms from the raw 
traces. This step extracts both time-domain and frequency-
domain features within the trace, enabling a more 
comprehensive analysis. Moreover, only the spectrums around 
the operation frequency is included for the training, reducing 
unrelated interferences. Second, to take full advantages of the 
prior knowledge about the communication protocol, the CE 
packets and the RP packets in the waveforms are decoded. Using 
this information, a charging power curve is generated, which is 
then input into the DNN for further exploration of its 
relationship with app usage.  

In the second step, namely the Data Splitting, the 
preprocessed data is split into training sets and test sets. This is 
essential to evaluate the machine learning model's performance 
properly. This two-fold data preprocessing approach effectively 
prepares the model for the subsequent data analysis and 
characteristic identification. 

The preprocessed data will be used to train a Convolutional 
Neural Network (CNN) to extract features. Since two types of 
data are generated during the data preprocessing stage, either 
one type of data or both types can be used when training the 
model. When using one type of data, the data goes through four 
convolutional layers to extract features, and then three fully 
connected layers are used for classification and regression, 
completing the model training. When training the CNN model 
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using both types of data, a multi-channel CNN structure is used 
to process the two data types. Each data type goes through four 
convolutional layers to extract features and is organized for 
classification using one fully connected layer. The features 
extracted from the two channels are merged through a 
Concatenation Layer to form a larger feature vector. The merged 
feature information is input into two additional fully connected 
layers for final classification and regression, mapping the 
features to the model's output, completing the model training. 

IV. EXPERIMENT VERIFICATION 

To verify the presence of communication information in the 
near magnetic field around the wireless charger, the Renesas 
WP15WBD-RK Wireless Charging Kit [22] was examined. The 
evaluation kit adhered to the Qi standard, with a steady-state 
operating frequency of 141kHz. A circular coil with 20 turns, 
wound using AWG20 wire and having a diameter of 5cm, was 
utilized for magnetic field detection. The coil was tuned by 
connecting a parallel resonant capacitor for a high gain at 
141kHz. The setup is shown in Fig. 4(a), a voltage of 141kHz 
was measured across the terminals of the coil, as shown in Fig. 
4(b), which is induced by the leakage field. The amplitude of the 
voltage waveform varied over time, indicating the presence of 
amplitude modulation (AM) communication. 

  
(a)     (b) 

Fig. 4. Experimental validation of the presence of communication information 
in the leakage field. (a) Experiment setup. (b) Communication binary bits 
present in the induced voltage. 

To verify that the leakage magnetic field strength is 
sufficient for remote eavesdropping, the second phase of the 
experiment utilized an LW radio reception circuit of a TECSUN 
TL-660 radio receiver to detect the signal, as shown in Fig. 5(a). 
The radio was tuned to the operation frequency of the charger 
(141kHz). The charging power command packet is fully 
recovered from the voltage sensed 1.5m from the charging 
device, as shown in Fig. 5(b). 

  
(a)     (b) 

Fig. 5. Experimental validation of distant eavesdropping. (a) Experiment setup. 
(b) Sensed voltage and the recovered digital waveform. 

After confirming the feasibility of the distant measurement 
of leakage magnetic fields, the next phase of the experiment 
aims to validate the capability of using DNN to analyze the 
measured waveforms and subsequently infer the user's activities 
on the phone. The experiments were conducted under six 
distinct cellphone activities, which included the use of five 
different apps - Amazon, X, YouTube, Safari, and Recorder - as 
well as a scenario in which the cellphone remains idle. For each 
activity, 100 data traces were gathered for training and an 
additional 10 data traces were gathered for testing. Each data 
trace was collected at a sampling rate of 200kHz and spanned a 
duration of 10 seconds. 

The gathered waveforms go through the preprocessing steps 
explained in Section III. Figure 6 provides an illustration of the 
preprocessed data. Figure 6(a) is an example of the spectrograms 
obtained through STFT. And Fig. 6(b) shows the values 
extracted from the CE and RP packets decoded from the 
waveform. The power curve generated by these values is also 
shown in Fig. 6(b). 

 
(a) 

 
(b) 

Fig. 6. An example of two types of information extracted from the measured 
magnetic field waveforms during the data preprocessing steps. (a) Spectrogram 
obtained through STFT. (b) values of decoded CE and RP packets and the 
estimated power curve. 

To evaluate the importance of two different types of 
information - spectrograms and Qi messages - in reflecting 
cellphone activities, three distinct CNN models were trained. 
These models were configured to use either spectrograms 
exclusively, Qi messages exclusively, or a combination of both 
types of information during training. The model architecture 
adheres to the design described in Section III. All three models 
were trained using a batch size of 100 for 200 epochs. 
Subsequently, the performance of each of the three models was 
assessed. 

The classification results are illustrated in Fig. 7 using 
confusion matrices. When trained only on spectrograms or Qi 
messages, the classifier achieves accuracy levels of 86.67% and 
76.67%, respectively. However, the classifier attains a 100% 
accuracy rate when employing a multi-channel CNN model with 

11 1 1111 111 1101 10 0000 0 11000 000 00 0110 1 1000 0 001 1

111111111111    01100000011   00000000011    01100000011 LSB Bits.

Control Error (CE) packet: Closed-loop error = 0.

Preamble       Header       Message    Checksum
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both spectrogram and Qi message data. This enables accurate 
identification of all six distinct activities based on their 
corresponding power traces, affirming the robustness and 
effectiveness of our approach in inferring user activities on 
cellphones under wireless charging. 

    
(a)          (b) 

 
(c) 

Fig. 7. Confusion matrices obtained when using different data for model 
training. (a) Model is trained only with spectrogram data. (b) Model is trained 
only with Qi message (CE/RP packets) data. (c) Model is trained with both 
kinds of data. 

V. CONCLUSION 

This study reveals that when charging a mobile phone 
through wireless charging technology, it generates a leakage 
magnetic field in the surrounding space that contains 
information about the phone's charging power. Because the 
phone’s charging power trend is related to the user's activities 
on the phone, the information contained in this leakage magnetic 
field may lead to privacy concerns. Through theoretical analysis 
and practical experiments, this research confirms that the 
leakage magnetic field can be measured in close proximity to the 
phone using a simple magnetic field receiving coil. By 
employing ferrite-rod-antenna based longwave radio reception 
technology, the signal detection range can be extended to 1.5 
meters, which is sufficient for measuring the leakage magnetic 
field without the victim's awareness. 

Based on the acquired magnetic field waveforms, this study 
indicates that information related to charging power is 
embedded in the original waveform and the in-band 
communication data designed by the Qi standard that can be 
extracted from the waveform. Machine learning techniques are 
used to extract features from this information and train a Deep 
Neural Network model. In the experiments, the final DNN 
model is capable of distinguishing between the phone's idle state 
and running five different apps based on the measured magnetic 
field waveforms, achieving an accuracy rate of 100%. This 
demonstrates the privacy risks associated with the wireless 
charging technology proposed in this study. 
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