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Abstract

Adversarial examples that can fool deep neural network
(DNN) models in computer vision present a growing threat.
The current methods of launching adversarial attacks concen-
trate on attacking image classifiers by adding noise to digi-
tal inputs. The problem of attacking object detection models
and adversarial attacks in physical world are rarely touched.
Some prior works are proposed to launch physical adversarial
attack against object detection models, but limited by certain
aspects. In this paper, we propose a novel physical adversar-
ial attack targeting object detection models. Instead of sim-
ply printing images, we manufacture real metal objects that
could achieve the adversarial effect. In both indoor and out-
door experiments we show our physical adversarial objects
can fool widely applied object detection models including
SSD, YOLO and Faster R-CNN in various environments. We
also test our attack in a variety of commercial platforms for
object detection and demonstrate that our attack is still valid
on these platforms. Consider the potential defense mecha-
nisms our adversarial objects may encounter, we conduct a
series of experiments to evaluate the effect of existing defense
methods on our physical attack.

1 Introdection

Though deep learning is recognized as a promising way
in processing a wide range of computer vision tasks, re-
cent works (Szegedy et al. 2013; Goodfellow, Shlens, and
Szegedy 2014; Papernot et al. 2016a; Moosavi-Dezfooli,
Fawzi, and Frossard 2016; Carlini and Wagner 2017) have
showed that deep learning models are vulnerable to delib-
erately crafted inputs known as adversarial examples. Re-
searchers revealed the fact that adding small but intention-
ally selected perturbations to the original inputs can lead
the target deep learning models to wrong decisions. Be-
yond the existence in image classification area (Szegedy
et al. 2013), adversarial examples are also found in DNN
models applied for other applications such as object detec-
tion (Xie et al. 2017), intrusion detection (Yang et al. 2018)
and voice recognition (Yuan et al. 2018). Fast gradient sign
method (FGSM) (Goodfellow, Shlens, and Szegedy 2014),
Jacobian-based saliency map attack (JSMA) (Papernot et al.
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2016a), DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard
2016) and C&W attack (Carlini and Wagner 2017) are rep-
resentative algorithms to generate adversarial examples.

Current studies of generating adversarial examples in
computer vision field mainly focus on directly manipulating
the pixels of the input images or videos in the digital domain.
This type of adversarial attack assumes that the adversary
has the ability to directly access and modify the input data
of the target model (e.g., video streaming). However, in more
realistic situations the DNN model is just one component of
the entire system, and the input data of the DNN model is in
charge by other components such as video surveillance sys-
tem. In these cases the adversary may not access the digital
inputs. Instead, a more realistic way for the adversary to gen-
erate adversarial examples is altering the objects physically
outside the system.

Many challenges emerge when the adversary tries to
generate physical adversarial examples against object de-
tection models. First, current attacking algorithms (Good-
fellow, Shlens, and Szegedy 2014; Papernot et al. 2016a;
Moosavi-Dezfooli, Fawzi, and Frossard 2016; Carlini and
Wagner 2017) are effective in fooling image classifier with
single digital frame, but they may not deceive object detec-
tors within the entire video frames where angles, distances
and backgrounds keep on changing. In fact, it has already
been shown that physical adversarial examples designed to
fool an image classifier do not continuously fool a standard
object detector (Lu et al. 2017), which suggests that con-
structing an physical adversarial example physically that can
fool a detector under different environments might be hard.
Second, the adversary can not directly add perturbations to
anywhere in the streaming images, instead the adversary can
only affect a small portion of the images by placing the ad-
versarial object in the environment. When the adversarial
objects are re-taken by the cameras, camera lens are also
unable to capture full colors of the adversarial examples due
to the various illumination conditions and the limitations of
the lens itself.

Recently some works (Kurakin, Goodfellow, and Ben-
gio 2018; Eykholt et al. 2018; Athalye et al. 2018; Sharif
et al. 2016) tried to extend adversarial attacks to physical
domain by generating adversarial examples that survive in
various physical conditions. In the domain of object detec-
tion, some prior works (Song et al. 2018; Chen et al. 2018;
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Lu, Sibai, and Fabry 2017) are proposed to create adversar-
ial examples in the physical space. A perturbed stop sign is
shown in (Lu, Sibai, and Fabry 2017) that cannot be detected
by the Faster R-CNN object detector (Ren et al. 2015). How-
ever, the perturbation is very large and obvious, making the
perturbed object hard to be defined as “stop sign” anymore.
In (Song et al. 2018) they generated adversarial posters and
patches against YOLO (Redmon et al. 2016) object detec-
tor, but their experiment is insufficient due to short testing
videos and limited physical conditions. In (Chen et al. 2018)
they successfully fooled Faster R-CNN object detector from
different distances and angles, but their attack cannot fool
other object detection models. All these prior works shared
the following limitations: they only tested their algorithms
in printed images and failed to manufacture practical and
meaningful objects; their pattern of perturbations are also
quite obvious and easily to be noticed by human, especially
in their tests of traffic signs; they all lacked detailed ex-
periments covering all representative object detection mod-
els and their adversarial printed images failed to transfer to
other DNN models.

Considering that prior works only touched Faster R-CNN
and YOLO series object detectors and physical adversarial
attack against SSD object detection model (Liu et al. 2016)
remains unexplored, in this paper we propose a novel physi-
cal attack against SSD object detection model and make the
following contributions to address the limitations in prior
works:

• We develop an effective algorithm to construct physical
adversarial object (rather than printed photos) that can
mislead target DNN models to certain incorrect decisions
under various conditions including different distances, an-
gles, light conditions and backgrounds.

• We successfully launch the physical adversarial attacks
against DNN models applied for object detection. We start
our attack at SSD model and then show our attack can
transfer to other popular object detection models includ-
ing Faster R-CNN and YOLO in commercial platforms
with high success rates.

• We conduct a series of experiments to evaluate the effect
of current defense mechanisms on our adversarial attacks.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the related work. Section 3 describes our
scheme of the physical adversarial attack. Section 4 presents
the experimental results and analysis. Section 5 discusses the
effect of some defense mechanisms. Section 6 concludes the
paper.

2 Related Work

Since the discovery of adversarial examples by Szegedy
(Szegedy et al. 2013) who observed that adding slightly
but intentionally generated perturbations to legal inputs can
mislead the deep learning models to incorrect decisions,
many algorithms (Goodfellow, Shlens, and Szegedy 2014;
Papernot et al. 2016a; Carlini and Wagner 2017; Moosavi-
Dezfooli, Fawzi, and Frossard 2016) are proposed to launch
more efficient and effective adversarial attacks. Despite the

great progress those attacks have achieved, all these attack
algorithms are only effective in the digital domain, i.e., they
directly manipulate the pixels of the input images or videos
under the assumption that the adversary can access and alter
the inputs digitally in the DNN systems.

A more realistic threat model of the adversarial attack
tries to launch attacks in the physical domain. Instead of
altering the pixels of the digital inputs, physical adversar-
ial attacks are launched by maliciously altering the objects
or environments outside the DNN systems. The first at-
tempt of physical adversarial attack was proposed by Ku-
rakin (Kurakin, Goodfellow, and Bengio 2018), who showed
that some adversarial images stay effective as inputs to the
classifiers after being printing out as photos and re-taken
by cameras. Sharif (Sharif et al. 2016) proposed an adver-
sarial attack against face recognition system by printing a
pair of eyeglass frames that prevent individuals being rec-
ognized or impersonate another individual. They tried to
maintain the effect of adversarial examples in physical world
by integrating additional regularizers representing three fac-
tors: Robustness, Smoothness and Printability into the orig-
inal loss function. Athalye (Athalye et al. 2018) extended
the physical attack to 3D object by synthesizing exam-
ples that are adversarial over a chosen distribution of trans-
formations called Expectation over Transformation (EOT).
Eykholt (Eykholt et al. 2018) followed the way of Sharif
(Sharif et al. 2016), and formulated more regularizers to
present the physical constraints on generating effective ad-
versarial examples against image classifiers and object de-
tectors.

Beyond adversarial examples against DNN models in im-
age classification, many researchers tried to extend adver-
sarial attacks to DNN models applied for object detection.
Xie (Xie et al. 2017) first proposed a method to generate
adversarial examples for object detection and semantic seg-
mentation digitally. Physical adversarial attacks (Lu, Sibai,
and Fabry 2017; Song et al. 2018; Chen et al. 2018) are
proposed afterwards to launch attacks against object detec-
tion models by physically alerting objects in the environ-
ments. Lu et al. (Lu, Sibai, and Fabry 2017) tried to at-
tack YOLO object detector by printing adversarial images
of road signs on the paper, but the success rate is not satis-
factory. Song (Song et al. 2018) demonstrated that YOLOv2
object detection model can be fooled by printed images and
stickers under some physical conditions. Their RP2 algo-
rithm extended Eykholt’s work (Eykholt et al. 2018) that
combined several regularizers representing physical factors.
Chen (Chen et al. 2018) showed that Faster R-CNN object
detector is also vulnerable to physical adversarial object.
Their ShapeShifter algorithm applied Athalye’s EOT algo-
rithm (Athalye et al. 2018) to simulate the potential transfor-
mation faced by adversarial objects in physical world. Cur-
rent schemes of physical adversarial objects limited their ex-
periments in printed images and failed to manufacture prac-
tical and meaningful objects. Their pattern of perturbations
are also quite obvious and easily to be noticed by human.
They also lack detailed experiments covering all representa-
tive object detection models and commercial platforms.

Several approaches are proposed to defend adversarial ex-
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amples. Adversarial training proposed by Tramer (Tramèr et
al. 2017) tries to make the model itself more robust during
the training stage by augmenting the original training dataset
with more pre-crafted adversarial examples. Defensive dis-
tillation proposed by Papernot (Papernot et al. 2016b) tries
to re-train the model by smoothing the potential adversarial
gradients which may be easily applied to craft the adversar-
ial examples. Guo (Guo et al. 2017) tried to apply some pre-
processing methods to defend potential adversarial inputs,
such as compression and transformation.

3 Physical Attack
In this section we will present our algorithms of physi-
cally attacking SSD object detector. First we introduce some
background knowledge about the target SSD model. We then
describe the threat model. At last we present our methods
of integrating iterative optimizations with outputs from SSD
models and various physical constraints.

3.1 SSD Model

Object detectors locate and classify multiple objects in a
given scene. Current popular deep neural network architec-
ture for object detection can be roughly categorized into two
classes: proposal based models like Faster R-CNN (Ren et
al. 2015) and regression based models such as YOLO (Red-
mon et al. 2016), SSD (Liu et al. 2016). Proposal based mod-
els treat object detection as a two-stage problem consisting
of region proposals followed by classifications for each of
these regions. Faster R-CNN can achieve 83.8% mAP on
VOC dataset, which is higher than YOLO and SSD. How-
ever, proposal based models such as Faster R-CNN suffer
from low processing speed. In contrast, regression based
models such as YOLO and SSD run a single Convolutional
Neural Network (CNN) over the input image to jointly pro-
duce bounding boxes for object localization and confidence
scores for classification. As the result, these networks can
achieve similar accuracy as proposal based models while
processing images much faster.

In this work, we focus on SSD model since it has the
same level accuracy as Faster R-CNN while maintaining
much higher processing speed. Further the adversarial attack
against SSD is rarely discussed so far.

SSD only needs an input image and ground truth boxes
for each object during training. Different from Faster R-
CNN which applies sliding multibox to generate prediction
bounding box, SSD and YOLO all evaluate a small set of de-
fault boxes of grid cells which in charge of prediction bound-
ing boxes and class labelling. It enables SSD and YOLO the
cability to process video in real time. To address the low ac-
curacy the YOLO encountered, SSD adds six extra layers to
evaluate default boxes of grid cells with different aspect ra-
tios at each location in several feature maps with different
scales. These six extra layers help SSD detect objects with
multi-scale vision and achieve higher accuracy than YOLO
while maintaining high processing speed.

3.2 Threat Model

Our work assumes an adversary who wishes to attack an
object detection system by manipulating certain objects in

the physical world. Specifically, our target model is an SSD
model trained for vehicle license plate recognition and the
adversary will try to launch the attack by designing and man-
ufacturing certain types of license plates. We chose vehicle
license plate instead of commonly tested traffic signs (Song
et al. 2018; Chen et al. 2018) for the following reasons:
• Recognizing vehicle license plates in an accurate and real-

time fashion is a realistic demand shared by automatic
driving, highway management and monitoring at certain
sites. Deep learning based detection systems are gradually
applied in license plate recognition commercially. It is in-
teresting to see the effect of adversarial attacks on such
systems.

• The adversarial attacks against road signs (e.g., stop sign)
have been widely achieved before. However, these attacks
are launched by printing the perturbed images of the road
signs. Though optimized to limit the perturbation, these
printed perturbed images are still obvious and easily to
be detected and removed. In contrast, customized vehicle
license plates widely exist in north America. It is practical
to generate adversarial vehicle license plates by adding
custom image in an unobtrusive way.

• The area of the license plate is much smaller than the area
of the roadside sign, which makes it more difficult and
challenging to add noise to the license plate for adversar-
ial attacks.
We further assume that the adversary has white-box level

access to the target SSD model. This means the adversary
can access the outputs of the model and is aware of the in-
ternal information such as gradients. Instead of directly ma-
nipulating the pixels of the input images or videos, the ad-
versary can only launch attacks by altering the physical ob-
jects (license plate in our case). Another constraint we put
on adversary is limiting the pattern of perturbation added
on the license plate. The attack will be meaningless if the li-
cense plate is so blurred that even human cannot recognize it
as a license plate. It also violates the law if characters on the
plates (i.e., numbers and texts) cannot be clearly recognized.

3.3 Attacking Algorithms

Our attacking algorithms followed the methods of generat-
ing adversarial examples proposed by Carlini and Wagner
(Carlini and Wagner 2017). We integrate their C&W attack
with the outputs of the SSD model along with additional
constraints from colors and brightness. Given an digital tem-
plate of the license plate x as Figure 1(a) shows, we add per-
turbations δ on it to generate the digital adversarial license
plate x′ = x+M · δ, M denotes the mask which defines the
area where the perturbation can be added. We define three
kinds of masks to prevent the important characters on plates
from blurring while fit the popular styles of vehicle license
plates:

• In mask 1 the perturbation is limited to the blank left part
on the license plate, as Figure 1(b) shows, it is a common
design of vehicle license plate.

• In mask 2 the perturbations is limited to the whole back-
ground of the license plate, as Figure 1(c) shows. It is also
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(b) mask 1 (c) mask 2 (d) mask 3

(a) clean

Figure 1: Clean template and three different masks for per-
turbations

a common design of vehicle license plate.

• In mask 3 the perturbation is limited to the whole back-
ground without the area of the numbers and texts on the
license plate, as Figure 1(d) shows.

To improve the robustness of our attack against varying
physical conditions including distance, angle, background
and illumination, we introduce the image transformation
function T to simulate various factors in the physical world.
For the distance, angle, and background, we simulate them
by placing adversarial license plates in a number of real pic-
tures which contain license plates with various angles, dis-
tances and background conditions as Figure 2 shows. After
the perturbation is added to the digital template of the ve-
hicle license plate, the adversarial license plate as an image
will be transformed and placed in a number of real back-
ground pictures rb to simulate the images taken from the
camera. By experiencing the resizing and rotation process
in different real license plate pictures with various back-
grounds, the adversarial template of the license plates will
be robust under different physical conditions. To address
the problem of unstable illumination, we perform gray-scale
transformation to our simulated images taken by camera.
Particularly, by adopting gamma correction, we can simu-
late the images under different intensity illumination. The
overall process of placing and gamma correction constitute
the transformation function T . The simulated images are de-
noted as

x′ = x+M, ·δ
Xi = T (x′, ri).

(1)

where x denotes the digital template of the clean vehicle li-
cense plate shown in Figure 1(a), δ denotes the perturbation,
M denotes the mask, and ri denotes the i-th real background
image.

The set S of simulated images of adversarial license plates
will act as inputs to the target SSD model for license plates
detection. Given an input image or video frame, the outputs
of SSD model are 1917 predictions (in our case) which con-
sist bounding boxes and corresponding class label vectors.
The bounding box is represented as four coordinates and the
class prediction is represented as a confidence score vector.
We select top k predictions of the output as the target since

Placing

Simulate taken 

images

Figure 2: Placing the digital template in background images

they are sufficient to represent the final predictions of the
SSD model. To achieve the attack, we apply the following
loss function:

�CW = E
Xi∈S

J(f(Xi), y
∗) (2)

where f denotes the extract function of SSD model which
extracts the logits before softmax or sigmoid layer from top
k predictions, and J denotes a C&W-like objective function
that measures the logits distance between the target class and
original class, J can be calculated as:

J(f(X), y∗) =
k∑

j=1

(Z(X)y∗ − Z(X)t) (3)

where Z(X)y∗ denotes the logits of the original class and
Z(X)t denotes the logits of the target class. By modify-
ing the loss function above, we can launch the hiding at-
tack against object detection model applied for license plate
recognition.
Hiding attack. By setting y∗ as class ‘plate’ and t as class
‘background’ the adversary can launch the hiding attack. In
the hiding attack the adversary tries to make specifically de-
signed license plate invisible in front of the object detection
models in the physical world by pushing the target model to
misclassify class ‘plate’ to class ‘background’. The distance
loss that measures the Lp distance (p = 2) between the clean
template and the perturbed template is expressed as

�L2
= c · ‖δ‖22 . (4)

In addition to the loss function �CW that push the model to
output target class and �L2

that controls the L2 distance, we
also need to consider the color constraints coming from the
plate manufacturing process. Considering the color space of
the printing machine will be limited, we set a constraint on
the total number of colors the perturbation could have, de-
noted as CN . Further considering the printing machine may
fail to accurately distinguish pixelated patterns, we followed
the smoothing method of total variation as (Song et al. 2018)
to encourage the pattern of perturbation being smooth and
continuous. The total variation of the perturbation pattern

1091



can be formulated as:

TV (M · δ) =
∑

i,j

∣∣∣(M · δ)ji+1 − (M · δ)ji
∣∣∣

+
∣∣∣(M · δ)j+1

i − (M · δ)ji .
∣∣∣ .

(5)

So we formulate the object function for color constraints
as follows:

�color = αCN + βTV (M · δ). (6)

Given an SSD object detector model, our final robust spa-
tially constrained perturbation is generated by iteratively op-
timizing the following object function:

argmin
δ

� = �CW + �L2 + �color. (7)

Figure 3 depicts the process of optimizing the perturbation.

4 Experimentation

We evaluated our physical adversarial object using the state-
of-the art object detector SSD. Our SSD model is trained
with InceptionV2 (Szegedy et al. 2016) convolutional net-
work as the base network. The dataset we used to train the
model contains 5012 images of license plates collected from
the internet. For the hiding attack, the target SSD model is
trained by this dataset labeled by only two possible classes
‘plate’ and ‘car’ since in this kind of attack we only concen-
trate on making the vehicle license plates invisible in front
of the target SSD model and other classes are irrelevant. We
first design the digital version of our adversarial vehicle li-
cense plate according to the physical attack algorithm de-
scribed before, we then manufacture these plates. The size
of the manufactured adversarial vehicle license plate is stan-
dard 6” x 12” and the material used to build the license plate
is aluminum (0.40). We evaluate the effect of our manufac-
tured adversarial vehicle license plates under various con-
ditions including indoor environment and outdoor environ-
ment. In the outdoor environment the adversarial vehicle li-
cense plates were placed on vehicles in the parking station.

4.1 Experiment Setup

All experiments were carried out on a server with an In-
tel E5-2623 v4 2.60GHz CPU with 16GB RAM, Ubuntu
18.04, accelerated by NVIDIA CUDA Framework 10.0 and
cuDNN 7.0 with two NVIDIA GeForce RTX 2080Ti GPUs.
The videos for evaluation are taken by SONY DCR-SR40
Handy-cam and the build-in camera of iPhone 6s. We trained
the SSD model using the Tensorflow Object Detection API
(Huang et al. 2017).

4.2 Experimental Results

Digital Template Starting with a clean digital template of
the vehicle license plate shown in Figure 1, we generated the
adversarial version by performing the optimization process
defined in Equations (1)-(7) to find the suitable perturbation.
The hyperparameters are chosen as follows: α = β = 10−7,
c = 0. Since we believe that the attack is valid as long as the
important characters on the plate can be clearly identified,
we set c = 0 to put no limit on the scale of the perturbation.

SSD Inception indoor outdoor
clean 478/504 (94.8%) 606/625 (97.0%)
mask1 180/612 (29.4%) 504/631 (79.9%)
mask2 59/528 (11.2%) 178/665 (26.8%)
mask3 64/540 (11.9%) 309/733 (42.2%)

Table 1: Detection rate of the hiding attack on SSD model.

We define three kinds of masks where perturbations are
allowed to be added in the previous section. We use 500 real
images with vehicle license plates and replace the license
part with our digital template to simulate the taken images
containing adversarial license plate. After iterations of op-
timization the resulted digital version of the adversarial ve-
hicle license plate with three different masks are shown in
Figure 4.

Hiding Attack We test the hiding attack in both the in-
door environment and the outdoor environment. In the in-
door environment, we recorded videos of the manufactured
adversarial license plates at a variety of distances (1m to 4m)
and angles (0-60 from the plate’s tangent). The camera al-
ways pointed at the plate. The videos served as the inputs to
our trained SSD Inception model. For comparison we also
tested clean license plates. We count the frames that the li-
cense plates are detected to evaluate the effect of the hiding
attack. In the outdoor environment we place the adversarial
vehicle license plate on a real car and recorded videos from
a variety of distances (1m to 5m) and angles (0-60, from
the plate’s tangent) using the build-in cameras of iPhone 6s.
Some frames of the detection video are shown in Figure 5.

The results of the adversarial attack on SSD Inception
model are shown in Table 1. We tested three adversarial li-
cense plates with different masks of perturbations and one
clean license plate. The table cells show the ratio: num-
ber of frames in which a license plate was detected / to-
tal number of frames, and a detection rate, which is the re-
sult of this ratio. We see that the SSD Inception model we
trained can detect clean license plate with high success rate
(94.8% indoor and 97.0% outdoor). Our adversarial license
plates can severely reduce the detection rate of the target
SSD Inception model in indoor and outdoor environment,
especially for perturbation with mask 2 that can reduce the
detection rate to 11.2% indoor and 26.8% outdoor.

From Table 1 we notice that the effect of our physical ad-
versarial objects drops in the outdoor environment. One rea-
son for this phenomenon may be the similarity between the
scenes which license plate placing on the car in the outdoor
environment with the images in the training set. The lower
effect of the adversarial license plate with perturbation mask
1 might be due to the smaller space of the perturbation.

Evaluation of Transferability In the previous sections we
show the adversarial license plates constructed following our
methods can be hidden from the SSD Inception model in
white-box setting with high probability (reducing detection
rate to 11.2% indoor and 26.8% outdoor.) However, in real-
world scenarios the adversary may fail to access the internal
information of the target object detection models.
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Figure 3: Optimize the perturbation iteratively to generate physical adversarial vehicle license plate

Mask1 Mask2 Mask3 

Figure 4: Digital version of the adversarial vehicle license
plate templates with different shapes of perturbation mask

To explore the transferability of our adversarial vehicle li-
cense plates, we fed our recorded videos to four extra models
which are also applied for license plates recognition. The at-
tack against these four extra models is in black-box model
since the adversary has no access to the internal information
of these target models.

The first model we tested is another SSD model with dif-
ferent base network, VGG. The dataset used to train this
SSD VGG model is the same as the one used to train the pre-
vious SSD Inception model. The results of the attack against
SSD VGG model are shown in Table 2. We can see from
these results that our adversarial license plates transfer with
a relatively high probability in indoor settings where the en-
vironment conditions are stable. However, once outdoors,
the effect for all adversarial license plates decreases signif-
icantly, but all of them retain moderate adversarial effect,
especially for mask 2 based attacks.

The second model we tested is a Faster R-CNN model
trained by the same dataset as the one used to train the
previous two SSD models. The base network of the Faster
R-CNN is the Inception network. The results we get on
Faster R-CNN model are quite similar with the one on orig-
inal SSD Inception, as shown in Table 3. It demonstrates
that the existence of transferability between SSD model and
Faster R-CNN model. The higher performance of the same
recorded video comparing to SSD VGG may be due to the

Figure 5: Frames in the detection video

same base network of the original SSD Inception model.
The third model we tested is a YOLO based model.

Different from the previous models which we trained our-
selves with the same dataset, this YOLO based model
is provided by a commercialized website which runs li-
cense plate recognition business through a prediction API
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SSD VGG indoor outdoor
clean 504/504 (100.0%) 624/625 (99.8%)
mask1 320/612 (52.3%) 630/631 (99.8%)
mask2 5/528 (0.9%) 216/665 (32.5%)
mask3 167/540 (30.9%) 449/733 (61.3%)

Table 2: Detection rate of the hiding attack on SSD VGG
model.

Faster R-CNN indoor outdoor
clean 466/504 (92.5%) 572/625 (91.5%)
mask1 260/612 (42.5%) 144/631 (22.8%)
mask2 48/528 (9.1%) 6/665 (0.9%)
mask3 114/540 (21.1%) 92/733 (12.6%)

Table 3: Detection rate of the hiding attack on Faster R-CNN
model.

(https://platerecognizer.com). The dataset used to train this
model is unknown and the internal information is inacces-
sible by the adversary, making it a good target to test the
transferability between two different object detection mod-
els with the same task. The results we get through querying
the prediction API are shown in Table 4. It is clear that only
perturbation with mask 2 can transfer with high probability
in this third-party YOLO based DNN model.

The fourth model we tested is not a DNN model. Ope-
nALPR (https://www.openalpr.com/) is a platform provid-
ing license plate recognition services and the main algo-
rithm it uses is based on traditional image processing and
feature extraction. Through testing our recorded video we
wish to know the reaction of the traditional non-DNN based
detection algorithms facing physical adversarial objects gen-
erated from DNN based models. Through a local version of
OpenALPR we tested our recorded video and the results are
shown in Table 5. We can see the adversarial license plate
with mask 2 is still valid in indoor and outdoor environments
but the effect of the rest two adversarial license plates reduce
significantly.

Through all the test on these different license plates de-
tection schemes we observe that they all heavily rely on the
clean characters in the middle of the license plates. Adver-
sarial license plates with mask 1 and mask 3 all leave the
middle characters untouched and it is the reason of the lower
attack performance and transferability. In contrast, adversar-
ial license plates with mask 2 stay adversarial effective in all
5 object detection models.

YOLO indoor outdoor
clean 483/504 (95.8%) 600/625 (96.0%)
mask1 480/612 (78.4%) 519/631 (82.3%)
mask2 1/528 (0.2%) 0/665 (0.0%)
mask3 394/540 (73.0%) 367/733 (50.1%)

Table 4: Detection rate of the hiding attack on YOLO based
model.

OpenALPR indoor outdoor
clean 473/504 (93.8%) 625/625 (100.0%)
mask1 543/612 (88.7%) 560/631 (88.7%)
mask2 78/528 (14.8%) 2/665 (0.3%)
mask3 419/540 (77.6%) 383/733 (52.3%)

Table 5: Detection rate of the hiding attack on OpenALPR.

Adversarial
training indoor outdoor

clean 478/504 (94.8%) 562/625 (90.0%)
mask1 578/612 (94.4%) 603/631 (95.5%)
mask2 342/528 (64.7%) 276/665 (41.5%)
mask3 403/540 (74.6%) 598/733 (81.5%)

Table 6: Detection rate of the model defended by adversarial
training.

5 Evaluation of Defenses

We evaluate our physical attack under three defense mecha-
nisms: adversarial training (Tramèr et al. 2017), distillation
(Papernot et al. 2016b) and input transformation (Guo et al.
2017). For adversarial training, we add 20 adversarial im-
ages to the original training set and retrain a SSD model.
For distillation, we smooth the training process by apply-
ing soft labels. For the input transformation, we resize to the
input images to 200x200, 300x300, ..., 600x600 and then
rotate them with degree 90, 180, 270 randomly. The detec-
tion rates of the defended model with the attack video are
shown in Table 6, Table 7 and Table 8. From the tables we
can see that the performance of our attack is not severely af-
fected by the distillation and input transformation, illustrat-
ing the invalidity of these defense methods when facing ro-
bust physical adversarial objects. On the other hand, We can
see that adversarial training achieves the best performance
against out attack, it can be due to the possibility that the
model memorizes the “noisy” numbers and texts. These ex-
perimental results indicate that adding intentionally noised
samples to the training dataset may significantly reduce the
risk of potential physical adversarial examples.

6 Conclusion

We show that the state-of-the-art SSD object detector is vul-
nerable to physically manufactured adversarial objects. Tar-
geting on a specific deep learning based object detection
model for license plate detection, we successfully lead the
target model to neglect the existence of the perturbed li-
cense plates in different environments, revealing the threat of

Distillation indoor outdoor
clean 454/504 (90.0%) 544/625 (87.1%)
mask1 23/612 (3.7%) 182/631 (28.8%)
mask2 10/528 (1.8%) 35/665 (5.2%)
mask3 0/540 (0%) 165/733 (22.5%)

Table 7: Detection rate of the model defended by distillation.
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Input
transformation indoor outdoor

clean 395/504 (78.3%) 498/625 (79.6%)
mask1 236 /612 (38.6%) 69/631 (10.9%)
mask2 71/528 (13.4%) 46/665 (6.9%)
mask3 180/540 (33.31%) 115/733 (15.6%)

Table 8: Detection rate of the model defended by input trans-
formation.

robust physical adversarial objects against current recogni-
tion systems based on deep learning. In the experiments we
prove that our physical adversarial object is not only effec-
tive to the target model we trained ourselves, but also other
black-box DNN models served for the similar task. Our at-
tack scheme is even effective to those methods that do not
rely on deep learning techniques. Our work reveals the ur-
gency of practical defense mechanisms against physical ad-
versarial objects. In the future, we will look into the counter
measures that can efficiently detect physical adversarial at-
tacks or smooth the effect of them.
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